Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 687: 115429, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113981

RESUMO

Microcystin-producing cyanobacterial blooms are a global issue threatening drinking water supplies and recreation on lakes and beaches. Direct measurement of microcystins is the only way to ensure waters have concentrations below guideline concentrations; however, analyzing water for microcystins takes several hours to days to obtain data. We tested LightDeck Diagnostics' bead beater cell lysis and two versions of the quantification system designed to give microcystin concentrations within 20 min and compared it to the standard freeze-thaw cycle lysis method and ELISA quantification. The bead beater lyser was only 30 % effective at extracting microcystins compared to freeze-thaw. When considering freeze-thaw samples analyzed in 2021, there was good agreement between ELISA and LightDeck version 2 (n = 152; R2 = 0.868), but the LightDeck slightly underestimated microcystins (slope of 0.862). However, we found poor relationships between LightDeck version 2 and ELISA in 2022 (n = 49, slopes 0.60 to 1.6; R2 < 0.6) and LightDeck version 1 (slope = 1.77 but also a high number of less than quantifiable concentrations). After the quantification issues are resolved, combining the LightDeck system with an already-proven rapid lysis method (such as microwaving) will allow beach managers and water treatment operators to make quicker, well-informed decisions.


Assuntos
Técnicas Biossensoriais , Cianobactérias , Microcistinas/análise , Microcistinas/metabolismo , Proliferação Nociva de Algas , Lagos/análise
2.
Am J Obstet Gynecol ; 212(4): 530.e1-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687567

RESUMO

OBJECTIVE: Mitochondrial DNA (mtDNA) encodes the proteins of the electron transfer chain to produce adenosine triphosphate through oxidative phosphorylation, and is essential to sustain life. mtDNA is unique from the nuclear genome in so much as it is solely maternally inherited (non-mendelian patterning), and shows a relatively high rate of mutation due to the absence of error checking capacity. While it is generally assumed that most new mutations accumulate through the process of heteroplasmy, it is unknown whether mutations initiated in the mother are inherited, occur in utero, or occur and accumulate early in life. The purpose of this study is to examine the maternally heritable and de novo mutation rate in the fetal mtDNA through high-fidelity sequencing from a large population-based cohort. STUDY DESIGN: Samples were obtained from 90 matched maternal (blood) and fetal (placental) pairs. In addition, a smaller cohort (n = 5) of maternal (blood), fetal (placental), and neonatal (cord blood) trios were subjected to DNA extraction and shotgun sequencing. The whole genome was sequenced on the Illumina HiSeq platform (Illumina Inc., San Diego, CA), and haplogroups and mtDNA variants were identified through mapping to reference mitochondrial genomes (NC_012920). RESULTS: We observed 665 single nucleotide polymorphisms and 82 insertions-deletions variants identified in the cohort at large. We achieved high sequencing depth of the mtDNA to an average depth of 65X (range, 20-171X) coverage. The proportions of haplogroups identified in the cohort are consistent with the patient's self-identified ethnicity (>90% Hispanic), and all maternal-fetal pairs mapped to the identical haplogroup. Only variants from samples with average depth >20X and allele frequency >1% were included for further analysis. While the majority of the maternal-fetal pairs (>90%) demonstrated identical variants at the single nucleotide level, we observed rare mitochondrial single nucleotide polymorphism discordance between maternal and fetal mitochondrial genomes. CONCLUSION: In this first in-depth sequencing analysis of mtDNA from maternal-fetal pairs at the time of birth, a low rate of de novo mutations appears in the fetal mitochondrial genome. This implies that these mutations likely arise from the maternal heteroplasmic pool (eg, in the oocyte), and accumulate later in the offspring's life. These findings have key implications for both the occurrence and screening for mitochondrial disorders.


Assuntos
DNA Mitocondrial , Mutagênese Insercional , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Adolescente , Adulto , Feminino , Sangue Fetal , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Placenta , Gravidez , Estudos Prospectivos , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA