Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4430, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887880

RESUMO

The lattice dynamics and high-temperature structural transition in SnS and SnSe are investigated via inelastic neutron scattering, high-resolution Raman spectroscopy and anharmonic first-principles simulations. We uncover a spectacular, extreme softening and reconstruction of an entire manifold of low-energy acoustic and optic branches across a structural transition, reflecting strong directionality in bonding strength and anharmonicity. Further, our results solve a prior controversy by revealing the soft-mode mechanism of the phase transition that impacts thermal transport and thermoelectric efficiency. Our simulations of anharmonic phonon renormalization go beyond low-order perturbation theory and capture these striking effects, showing that the large phonon shifts directly affect the thermal conductivity by altering both the phonon scattering phase space and the group velocities. These results provide a detailed microscopic understanding of phase stability and thermal transport in technologically important materials, providing further insights on ways to control phonon propagation in thermoelectrics, photovoltaics, and other materials requiring thermal management.

2.
Sci Adv ; 4(12): eaat9460, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30588489

RESUMO

Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Greenșs function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.

3.
Nanotechnology ; 19(5): 055605, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-21817613

RESUMO

In situ time-lapse photography and laser irradiation are applied to understand unusual coordinated growth kinetics of vertically aligned carbon nanotube arrays including pauses in growth, retraction, and local equilibration in length. A model is presented which explains the measured kinetics and determines the conditions for diffusion-limited growth. Laser irradiation of the growing nanotube arrays is first used to prove that the nanotubes grow from catalyst particles at their bases, and then increase their growth rate and terminal lengths.

4.
Phys Rev Lett ; 90(14): 145501, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12731925

RESUMO

The nucleation pathway for single-wall carbon nanotubes on a metal surface is demonstrated by a series of total energy calculations using density functional theory. Incorporation of pentagons at an early stage of nucleation is energetically favorable as they reduce the number of dangling bonds and facilitate curvature of the structure and bonding to the metal. In the presence of the metal surface, nucleation of a closed cap or a capped single-wall carbon nanotube is overwhelmingly favored compared to any structure with dangling bonds or to a fullerene.

5.
Science ; 263(5143): 68-71, 1994 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-17748352

RESUMO

Laser radiation (XeCl laser, 308-nanometer wavelength) focused into a cell containing Mo(CO)(6) vapor produced ultrafine particles in the extended waist of the laser beam. Negative ion mass spectrometry revealed molybdenum carbide cluster ions with a stoichiometry MonC4n (n = 1 to 4). The MonC4n(-) (n = 2 to 4) ions are completely unreactive with NH(3), H(2)O, and O(2), suggesting structures in which the molybdenum atoms are unavailable for coordination to additional ligands. Collision-induced dissociation studies of these anions show the loss of MoC(4) units as the main fragmentation pathway. This observation, together with the lack of addition reactions, provides a basis for structures in which a planar cluster of two, three, or four molybdenum atoms is surrounded by, and bonded to, carbon dimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA