Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Polym Sci (2020) ; 62(9): 1820-1830, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39183793

RESUMO

Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of post-operative epithelial-mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 3-methacryloxypropyl tris (trimethylsiloxy) silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α-smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO.

2.
Curr Eye Res ; 48(2): 195-207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179421

RESUMO

PURPOSE: The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. METHODS: A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. RESULTS: The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. CONCLUSIONS: A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.


Assuntos
Oftalmopatias , Corpo Vítreo , Humanos , Animais , Coelhos , Suínos , Fenômenos Biomecânicos , Retina , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA