Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 41(3): 111509, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261014

RESUMO

Noradrenergic afferents to hypothalamic corticotropin releasing hormone (CRH) neurons provide a major excitatory drive to the hypothalamic-pituitary-adrenal (HPA) axis via α1 adrenoreceptor activation. Noradrenergic afferents are recruited preferentially by somatic, rather than psychological, stress stimuli. Stress-induced glucocorticoids feed back onto the hypothalamus to negatively regulate the HPA axis, providing a critical autoregulatory constraint that prevents glucocorticoid overexposure and neuropathology. Whether negative feedback mechanisms target stress modality-specific HPA activation is not known. Here, we describe a desensitization of the α1 adrenoreceptor activation of the HPA axis following acute stress in male mice that is mediated by rapid glucocorticoid regulation of adrenoreceptor trafficking in CRH neurons. Glucocorticoid-induced α1 receptor trafficking desensitizes the HPA axis to a somatic but not a psychological stressor. Our findings demonstrate a rapid glucocorticoid suppression of adrenergic signaling in CRH neurons that is specific to somatic stress activation, and they reveal a rapid, stress modality-selective glucocorticoid negative feedback mechanism.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Camundongos , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico , Adrenérgicos
2.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171717

RESUMO

The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-γ and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.


Assuntos
Matriz Extracelular/metabolismo , Lipedema/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular/fisiologia , Humanos , Organoides/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual/métodos
3.
Cells ; 9(10)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008073

RESUMO

Human adipose-derived stem cells (ASCs) show immense promise for treating inflammatory diseases, attributed primarily to their potent paracrine signaling. Previous investigations demonstrated that short-term Rapamycin preconditioning of bone marrow-derived stem cells (BMSCs) elevated secretion of prostaglandin E2, a pleiotropic molecule with therapeutic effects in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and enhanced immunosuppressive capacity in vitro. However, this has yet to be examined in ASCs. The present study examined the therapeutic potential of short-term Rapamycin-preconditioned ASCs in the EAE model. Animals were treated at peak disease with control ASCs (EAE-ASCs), Rapa-preconditioned ASCs (EAE-Rapa-ASCs), or vehicle control (EAE). Results show that EAE-ASCs improved clinical disease scores and elevated intact myelin compared to both EAE and EAE-Rapa-ASC animals. These results correlated with augmented CD4+ T helper (Th) and T regulatory (Treg) cell populations in the spinal cord, and increased gene expression of interleukin-10 (IL-10), an anti-inflammatory cytokine. Conversely, EAE-Rapa-ASC mice showed no improvement in clinical disease scores, reduced myelin levels, and significantly less Th and Treg cells in the spinal cord. These findings suggest that short-term Rapamycin preconditioning reduces the therapeutic efficacy of ASCs when applied to late-stage EAE.


Assuntos
Antibacterianos/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Esclerose Múltipla/tratamento farmacológico , Sirolimo/efeitos adversos , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Sirolimo/farmacologia
4.
Biochem Biophys Res Commun ; 529(4): 1180-1185, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819583

RESUMO

Volumetric muscle loss and muscle degeneration are conditions for which there are currently no effective treatment options. Human adipose stem cells (hASCs) offer promise in cell-based regenerative therapies to treat muscle damage due to their ability to self-renew and differentiate. However, in the absence of universal culture conditions that yield greater than 15% myogenic differentiation, the clinical potential of these cells is limited. Here we report on the evaluation of two different media recipes, three extracellular matrix (ECM) proteins, and a poly (ethylene glycol) (PEGDMA) hydrogel with a physiologically relevant elasticity to determine how the extracellular chemical and physical environment work together to enhance myogenic differentiation of hASCs. Our results identify a combination of unique biochemical and physical factors that promote myogenesis, laying the groundwork for creating a scaffold and culture medium that will effectively and efficiently direct myogenic differentiation of adult stem cells for clinical applications in the future.


Assuntos
Tecido Adiposo/citologia , Materiais Biocompatíveis/farmacologia , Desenvolvimento Muscular , Células-Tronco/citologia , Alicerces Teciduais/química , Azacitidina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Solubilidade , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
5.
J Biomater Sci Polym Ed ; 30(11): 895-918, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039085

RESUMO

Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química , Alicerces Teciduais/química , Adipócitos/metabolismo , Materiais Biocompatíveis/metabolismo , Adesão Celular , Diferenciação Celular , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Humanos , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metacrilatos/metabolismo , Conformação Molecular , Polietilenoglicóis/metabolismo , Porosidade , Reologia , Propriedades de Superfície , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA