Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuro Oncol ; 13(7): 710-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21727210

RESUMO

Glioblastoma multiforme, a highly aggressive tumor of the central nervous system, has a dismal prognosis that is due in part to its resistance to radio- and chemotherapy. The protein kinase C (PKC) family of serine threonine kinases has been implicated in the formation and proliferation of glioblastoma multiforme. Members of the protein kinase D (PKD) family, which consists of PKD1, -2 and, -3, are prominent downstream targets of PKCs and could play a major role in glioblastoma growth. PKD2 was highly expressed in both low-grade and high-grade human gliomas. The number of PKD2-positive tumor cells increased with glioma grading (P < .001). PKD2 was also expressed in CD133-positive glioblastoma stem cells and various glioblastoma cell lines in which the kinase was found to be constitutively active. Inhibition of PKDs by pharmacological inhibitors resulted in substantial inhibition of glioblastoma proliferation. Furthermore, specific depletion of PKD2 by siRNA resulted in a marked inhibition of anchorage-dependent and -independent proliferation and an accumulation of glioblastoma cells in G0/G1, accompanied by a down-regulation of cyclin D1 expression. In addition, PKD2-depleted glioblastoma cells exhibited substantially reduced tumor formation in vivo on chicken chorioallantoic membranes. These findings identify PKD2 as a novel mediator of glioblastoma cell growth in vitro and in vivo and thereby as a potential therapeutic target for this devastating disease.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/enzimologia , Glioblastoma/patologia , Canais de Cátion TRPP/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/enzimologia , Ciclo Celular , Proliferação de Células , Galinhas , Membrana Corioalantoide/metabolismo , Ciclina D1/metabolismo , Glioblastoma/enzimologia , Humanos , Técnicas Imunoenzimáticas , RNA Interferente Pequeno/genética , Canais de Cátion TRPP/antagonistas & inibidores , Canais de Cátion TRPP/genética
2.
Gut ; 59(10): 1316-30, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20732914

RESUMO

BACKGROUND: Tumour angiogenesis is crucially dependent on the communication between the tumour and the associated endothelium. Protein kinase D (PKD) isoenzymes mediate vascular endothelial growth factor-A (VEGF-A) induced endothelial cell proliferation and migration and are also highly expressed in various tumours. AIM: To examine the role of PKDs for tumour proliferation and angiogenesis selectively in pancreatic and gastric tumours and in tumour-associated endothelium in vitro and in vivo. METHODS: PKD2 expression in human tumours was determined by immunohistochemistry. The effect of PKD2 depletion in endothelial cells by siRNAs was examined in sprouting assays, the chorioallantois model (CAM) and tumour xenografts. In murine endothelium in vivo PKD2 was knocked-down by splice switching oligonucleotides. Human PKD2 was depleted in xenografts by siRNAs and PKD2-miRs. PKD2 activation by hypoxia and its role for hypoxia-induced NR4/TR3- and VEGF-A promoter activity, expression and secretion was investigated in cell lines. RESULTS: PKD2 is expressed in gastrointestinal tumours and in the tumour-associated endothelium. Tumour growth and angiogenesis in the CAM and in tumour xenografts require PKD expression in endothelial cells. Conversely, hypoxia activates PKD2 in pancreatic cancer cells and PKD2 was identified as the major mediator of hypoxia-stimulated VEGF-A promoter activity, expression and secretion in tumour cells. PKD2 depletion in pancreatic tumours inhibited tumour-driven blood vessel formation and tumour growth in the CAM and in orthotopic pancreatic cancer xenografts. CONCLUSION: PKD2 regulates hypoxia-induced VEGF-A expression/secretion by tumour cells and VEGF-A stimulated blood vessel formation. PKD2 is a novel, essential mediator of tumour cell-endothelial cell communication and a promising therapeutic target to inhibit angiogenesis in gastrointestinal cancers.


Assuntos
Neoplasias Gastrointestinais/patologia , Proteínas Quinases/fisiologia , Animais , Comunicação Celular/fisiologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/enzimologia , Técnicas de Cocultura , Células Endoteliais/patologia , Endotélio Vascular/enzimologia , Neoplasias Gastrointestinais/irrigação sanguínea , Neoplasias Gastrointestinais/enzimologia , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/enzimologia , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Proteína Quinase D2 , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transplante Heterólogo , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/fisiologia
3.
Mol Biol Cell ; 21(6): 1011-22, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20089835

RESUMO

Protein kinase D (PKD) isoenzymes regulate the formation of transport carriers from the trans-Golgi network (TGN) that are en route to the plasma membrane. The PKD C1a domain is required for the localization of PKDs at the TGN. However, the precise mechanism of how PKDs are recruited to the TGN is still elusive. Here, we report that ADP-ribosylation factor (ARF1), a small GTPase of the Ras superfamily and a key regulator of secretory traffic, specifically interacts with PKD isoenzymes. ARF1, but not ARF6, binds directly to the second cysteine-rich domain (C1b) of PKD2, and precisely to Pro275 within this domain. Pro275 in PKD2 is not only crucial for the PKD2-ARF1 interaction but also for PKD2 recruitment to and PKD2 function at the TGN, namely, protein transport to the plasma membrane. Our data suggest a novel model in which ARF1 recruits PKD2 to the TGN by binding to Pro275 in its C1b domain followed by anchoring of PKD2 in the TGN membranes via binding of its C1a domain to diacylglycerol. Both processes are critical for PKD2-mediated protein transport.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Isoenzimas/metabolismo , Prolina/metabolismo , Proteínas Quinases/metabolismo , Transporte Proteico/fisiologia , Rede trans-Golgi/metabolismo , Fator 1 de Ribosilação do ADP/genética , Linhagem Celular , Humanos , Isoenzimas/genética , Proteína Quinase D2 , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA