Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 14(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37754719

RESUMO

In this study, we investigated the effect of queen caging on honey bee colonies' post-treatment development and the optimal timing of method application on honey production during the main summer nectar flow. We conducted the study in nine apiaries (N = 9) across six Mediterranean countries, with a total of 178 colonies. The colonies were divided into three test groups: QC1, QC2, and C. The QC1 group involved queens caged for a total of 28 days before the expected harvesting day. In the QC2 group, queens were caged for 28 days, but only 14 days before the expected harvesting day. The C group consisted of queens that were not caged, and the colonies received common local treatments. In both the QC1 and QC2 groups, the colonies were treated with a 4.2% oxalic acid (OA) solution by trickling after the queen release. Our findings revealed no significant adverse effects (p > 0.05) on colony strength at the end of the study resulting from queen caging. However, significantly lower amounts of honey were extracted from the QC1 group compared to both the QC2 group (p = 0.001) and the C group (p = 0.009). Although there were no initial differences in Varroa destructor infestation between the groups, ten weeks later, a significantly higher infestation was detected in the C group compared to both the QC1 group (p < 0.01) and the QC2 group (p = 0.003). Overall, our study demonstrates that queen caging, in combination with the use of OA, is an effective treatment for controlling V. destructor. However, the timing of caging plays a crucial role in honey production outcomes.

2.
Gigascience ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36971293

RESUMO

BACKGROUND: The honey bee (Apis mellifera) is an ecologically and economically important species that provides pollination services to natural and agricultural systems. The biodiversity of the honey bee in parts of its native range is endangered by migratory beekeeping and commercial breeding. In consequence, some honey bee populations that are well adapted to the local environment are threatened with extinction. A crucial step for the protection of honey bee biodiversity is reliable differentiation between native and nonnative bees. One of the methods that can be used for this is the geometric morphometrics of wings. This method is fast, is low cost, and does not require expensive equipment. Therefore, it can be easily used by both scientists and beekeepers. However, wing geometric morphometrics is challenging due to the lack of reference data that can be reliably used for comparisons between different geographic regions. FINDINGS: Here, we provide an unprecedented collection of 26,481 honey bee wing images representing 1,725 samples from 13 European countries. The wing images are accompanied by the coordinates of 19 landmarks and the geographic coordinates of the sampling locations. We present an R script that describes the workflow for analyzing the data and identifying an unknown sample. We compared the data with available reference samples for lineage and found general agreement with them. CONCLUSIONS: The extensive collection of wing images available on the Zenodo website can be used to identify the geographic origin of unknown samples and therefore assist in the monitoring and conservation of honey bee biodiversity in Europe.


Assuntos
Agricultura , Biodiversidade , Animais , Abelhas , Polinização , Adaptação Fisiológica , Europa (Continente)
3.
Front Physiol ; 14: 1139269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935742

RESUMO

The purpose of our study was to investigate methods of short-term storage that allow preservation, transport and retrieval of genetic information contained in honeybee queen's spermatheca. Genotyping of the honeybee colony requires well ahead planned sample collection, depending on the type of data to be acquired. Sampling and genotyping of spermatheca's content instead of individual offspring is timesaving, allowing answers to the questions related to patriline composition immediately after mating. Such procedure is also cheaper and less error prone. For preservation either Allprotect Tissue Reagent (Qiagen) or absolute ethanol were used. Conditions during transportation were simulated by keeping samples 6-8 days at room temperature. Six different storing conditions of spermathecas were tested, complemented with two DNA extraction methods. We have analysed the concentration of DNA, RNA, and proteins in DNA extracts. We also analysed how strongly the DNA is subjected to fragmentation (through amplification of genetic markers ANT2 and tRNAleu-COX2) and whether the quality of the extracted DNA is suitable for microsatellite (MS) analysis. Then, we tested the usage of spermatheca as a source of patriline composition in an experiment with three instrumentally inseminated virgin queens and performed MS analysis of the extracted DNA from each spermatheca, as well as queens' and drones' tissue. Our results show that median DNA concentration from spermathecas excised prior the storage, regardless of the storing condition and DNA extraction method, were generally lower than median DNA concentration obtained from spermathecas dissected from the whole queens after the storage. Despite the differences in DNA yield from the samples subjected to different storing conditions there was no significant effect of storage method or the DNA extraction method on the amplification success, although fewer samples stored in EtOH amplified successfully in comparison to ATR storing reagent. However, we recommend EtOH as a storing reagent due to its availability, low price, simplicity in usage in the field and in the laboratory, and capability of good preservation of the samples for DNA analysis during transport at room temperature.

5.
Sci Rep ; 12(1): 18832, 2022 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336704

RESUMO

Honeybee health and the species' gut microbiota are interconnected. Also noteworthy are the multiple niches present within hives, each with distinct microbiotas and all coexisting, which we termed "apibiome". External stressors (e.g. anthropization) can compromise microbial balance and bee resilience. We hypothesised that (1) the bacterial communities of hives located in areas with different degrees of anthropization differ in composition, and (2) due to interactions between the multiple microbiomes within the apibiome, changes in the community of a niche would impact the bacteria present in other hive sections. We characterised the bacterial consortia of different niches (bee gut, bee bread, hive entrance and internal hive air) of 43 hives from 3 different environments (agricultural, semi-natural and natural) through 16S rRNA amplicon sequencing. Agricultural samples presented lower community evenness, depletion of beneficial bacteria, and increased recruitment of stress related pathways (predicted via PICRUSt2). The taxonomic and functional composition of gut and hive entrance followed an environmental gradient. Arsenophonus emerged as a possible indicator of anthropization, gradually decreasing in abundance from agriculture to the natural environment in multiple niches. Importantly, after 16 days of exposure to a semi-natural landscape hives showed intermediate profiles, suggesting alleviation of microbial dysbiosis through reduction of anthropization.


Assuntos
Microbiota , Urticária , Abelhas/genética , Animais , RNA Ribossômico 16S/genética , Bactérias/genética , Agricultura
6.
Insects ; 11(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927627

RESUMO

Infestation with Varroa destructor is a serious cause of bee colony (Apis mellifera) losses on a global level. However, the presence of untreated survivor populations in many different regions supports the idea that selection for resistance can be successful. As colony survival is difficult or impossible to measure, differences in mite infestation levels and tests for specific behavioral traits are used for selective breeding for Varroa resistance. In this paper we looked into different definitions of mite infestation and linked these with brood hygiene (pin test), brood recapping and suppressed mite reproduction. We based our analyses on datasets of Apis mellifera carnica from three countries: Austria (147 records), Croatia (135) and Germany (207). We concluded that bee infestation in summer, adjusted for the level of natural mite fall in spring, is a suitable trait in the breeding objective, and also suggested including brood infestation rate and the increase rate of bee infestation in summer. Repeatability for bee infestation rate was about 0.55, for cells opened in pin test about 0.33, for recapping 0.35 and for suppressed mite reproduction (SMR) virtually zero. Although in most cases we observed correlations with the expected sign between infestation parameters and behavioral traits, the values were generally low (<0.2) and often not significantly different from zero.

7.
Bull Environ Contam Toxicol ; 104(1): 84-89, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31807795

RESUMO

Element concentrations were measured in multifloral honeys sampled from Central and Eastern Croatia. The mean levels of elements ranged from (µg/kg): Al 323-7228, Cu 103-1033, Cr 14.4-139, Fe 295-2336, Ni 122-523, Pb 9.65-154, Zn 442-2025. In all samples, As and Cd content were below the LOD values. Significant differences in the concentrations of Al, Cr, Cu, Fe, Pb and Zn (p < 0.01) were found in honeys from different locations within regions and within locations of each region. Also, significant differences in total element contents between the two regions were determined for Cr and Cu (p < 0.01). No significant differences were observed in total Al, Fe, Pb and Zn levels between regions. The highest Al, Cr, Cu, Fe and Zn concentrations were measured in Central Croatia, while Ni and Pb in Eastern Croatia. The results confirm the decisive influence of collection location on the composition of toxic and trace elements in honey.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Substâncias Perigosas/análise , Mel/análise , Oligoelementos/análise , Croácia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA