Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(6): 1515-1529, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35560992

RESUMO

Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.


Assuntos
Genômica , Nematoides , Animais , Análise de Sequência de DNA , Antioxidantes , Regiões Promotoras Genéticas
2.
Plant Physiol ; 189(2): 972-987, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218353

RESUMO

The activity of intracellular plant nucleotide-binding leucine-rich repeat (NB-LRR) immune receptors is fine-tuned by interactions between the receptors and their partners. Identifying NB-LRR interacting proteins is therefore crucial to advance our understanding of how these receptors function. A co-immunoprecipitation/mass spectrometry screening was performed in Nicotiana benthamiana to identify host proteins associated with the resistance protein Gpa2, a CC-NB-LRR immune receptor conferring resistance against the potato cyst nematode Globodera pallida. A combination of biochemical, cellular, and functional assays was used to assess the role of a candidate interactor in defense. A N. benthamiana homolog of the GLYCINE-RICH RNA-BINDING PROTEIN7 (NbGRP7) protein was prioritized as a Gpa2-interacting protein for further investigations. NbGRP7 also associates in planta with the homologous Rx1 receptor, which confers immunity to Potato Virus X. We show that NbGRP7 positively regulates extreme resistance by Rx1 and cell death by Gpa2. Mutating the NbGRP7 RNA recognition motif (RRM) compromises its role in Rx1-mediated defense. Strikingly, ectopic NbGRP7 expression is likely to impact the steady-state levels of Rx1, which relies on an intact RRM. Our findings illustrate that NbGRP7 is a pro-immune component in effector-triggered immunity by regulating Gpa2/Rx1 function at a posttranscriptional level.


Assuntos
Proteínas de Plantas , Tylenchoidea , Animais , Glicina/metabolismo , Doenças das Plantas , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos/metabolismo
3.
PLoS One ; 16(4): e0249637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831039

RESUMO

Plant pathogens often exploit a whole range of effectors to facilitate infection. The RXLR effector AVR1 produced by the oomycete plant pathogen Phytophthora infestans suppresses host defense by targeting Sec5. Sec5 is a subunit of the exocyst, a protein complex that is important for mediating polarized exocytosis during plant development and defense against pathogens. The mechanism by which AVR1 manipulates Sec5 functioning is unknown. In this study, we analyzed the effect of AVR1 on Sec5 localization and functioning in the moss Physcomitrium patens. P. patens has four Sec5 homologs. Two (PpSec5b and PpSec5d) were found to interact with AVR1 in yeast-two-hybrid assays while none of the four showed a positive interaction with AVR1ΔT, a truncated version of AVR1. In P. patens lines carrying ß-estradiol inducible AVR1 or AVR1ΔT transgenes, expression of AVR1 or AVR1ΔT caused defects in the development of caulonemal protonema cells and abnormal morphology of chloronema cells. Similar phenotypes were observed in Sec5- or Sec6-silenced P. patens lines, suggesting that both AVR1 and AVR1ΔT affect exocyst functioning in P. patens. With respect to Sec5 localization we found no differences between ß-estradiol-treated and untreated transgenic AVR1 lines. Sec5 localizes at the plasma membrane in growing caulonema cells, also during pathogen attack, and its subcellular localization is the same, with or without AVR1 in the vicinity.


Assuntos
Bryopsida/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Fatores de Virulência/metabolismo , Bryopsida/parasitologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Fatores de Virulência/genética
4.
Front Plant Sci ; 12: 641582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767723

RESUMO

Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA