Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543040

RESUMO

Doxorubicin is an effective chemotherapeutic agent in the treatment of solid hematological and non-hematological carcinoma. However, its long-term usage could result in side effects, such as cardiomyopathy, chronic heart failure, neurotoxicity and cancer cell resistance. In this study, we reported the sensitivity enhancement of A549 human lung cancer cells on doxorubicin at a low dose (0.1 ppm) in combination with 10-60 ppm of crude and alkaloid extracts derived from the leaves of Kratom (Mitragyna speciosa (Korth.) Havil. Rubiaceae). A549 cancer cell lines were insensitive to the crude extract containing low mitragynine (MG) (4-5%), while these cells were moderately inhibited by the alkaloid extract containing 40-45% MG (IC50 of 48-55 ppm). The alkaloid extract was found to inhibit A549 cancer cells via apoptosis as suggested by the higher relative fluorescence intensity with Annexin compared to that in propidium iodide (PI), i.e., a positive Annexin and a negative PI. The combination of crude extract and doxorubicin sensitized A549 cancer cells to doxorubicin by 1.3 to 2.4 times, while the combination with the alkaloid induced a 2.6- to 3.4-fold increase in sensitivity. The calculated combination index (CI) for doxorubicin with the crude and alkaloid extracts was 0.6 and 0.3, respectively, showing potential synergistic combinations to reduce the level of dosage of doxorubicin used in chemotherapy. In addition, the synergistic enhancement effect of crude extract on the cytotoxic activity of doxorubicin provides insights into the plausibility of non-alkaloids to influence the biological activities of Kratom.


Assuntos
Neoplasias Pulmonares , Mitragyna , Alcaloides de Triptamina e Secologanina , Humanos , Extratos Vegetais/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/induzido quimicamente , Doxorrubicina/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Anexinas
2.
Mar Drugs ; 21(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132963

RESUMO

Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals' cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S.


Assuntos
Sulfeto de Hidrogênio , Camundongos , Animais , Sulfeto de Hidrogênio/efeitos adversos , Sulfeto de Hidrogênio/metabolismo , Interleucina-6/metabolismo , Anti-Inflamatórios/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Carragenina/efeitos adversos , Óxido Nítrico/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Mamíferos/metabolismo
3.
Arch Microbiol ; 205(12): 378, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946003

RESUMO

Colorectal cancer accounted for the third most common cancer in the world. The search for new drug candidates that can be used for colorectal cancer treatment from marine-derived fungi, Emericella sp. The present study was performed to isolate the cytotoxic compound from Emericella sp. The isolation method was carried out by using a combination of chromatographic techniques to afford compound 1. The cytotoxic activity and the exosome production property were determined by using proliferation and luciferase assay against HT29 CD63 Nluc cells, respectively. The chemical structure of compound 1 was identified as cordycepin based on spectroscopy methods such as mass spectrometry and nuclear magnetic resonance (1D and 2D NMR) analyses and comparison with authentic spectral data. The biological activity assay showed that cordycepin exhibited cytotoxic activity with an IC50 value of 92.05 µM through proliferation assay, and also inhibited the exosome production by luciferase assay with an IC50 value of 86.47 µM. Cordycepin was isolated from culture broth Emericella sp., exhibiting moderate cytotoxic activity and inhibitory activity of exosome production. Thus, cordycepin is a potential compound to be investigated further for its exosome production inhibition activity for further use as an anticancer lead compound.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Emericella , Humanos , Emericella/química , Aspergillus , Linhagem Celular Tumoral , Fungos , Neoplasias do Colo/tratamento farmacológico , Luciferases , Estrutura Molecular , Antineoplásicos/química
4.
Nat Prod Bioprospect ; 13(1): 38, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843645

RESUMO

The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxymanzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes.

5.
Mar Drugs ; 21(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504902

RESUMO

Marine compounds represent a varied source of new drugs with potential anticancer effects. Among these, sponges, including those belonging to the Irciniidae family, have been demonstrated to exert cytotoxic effects on different human cancer cells. Here, we investigated, for the first time, the therapeutic effect of an extract (referred as iSP) from the sponge, Ircinia ramosa (Porifera, Dictyoceratida, and Irciniidae), on A375 human melanoma cells. We found that iSP impaired A375 melanoma cells proliferation, induced cell death through caspase-dependent apoptosis and arrested cells in the G1 phase of the cell cycle, as demonstrated via both flow cytometry and qPCR analysis. The proapoptotic effect of iSP is associated with increased ROS production and mitochondrial modulation, as observed by using DCF-DHA and mitochondrial probes. In addition, we performed wound healing, invasion and clonogenic assays and found that iSP was able to restrain A375 migration, invasion and clonogenicity. Importantly, we observed that an iSP treatment modulated the expression of the EMT-associated epithelial markers, E-CAD and N-CAD, unveiling the mechanism underlying the effect of iSP in modulating A375 migration and invasion. Collectively, this study provides the first evidence to support the role of Ircinia ramosa sponge extracts as a potential therapeutic resource for the treatment of human melanoma.


Assuntos
Melanoma , Poríferos , Animais , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Apoptose , Proliferação de Células , Movimento Celular
6.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986909

RESUMO

Andrographis paniculata is widely used as a traditional medicine in Asian countries. It has been classified as a safe and non-toxic medicine by traditional Chinese medicine. The investigation of the biological activities of A. paniculata is still focused on the crude extract and isolation of its main active compound, andrographolide, and its derivatives. However, the use of andrographolide alone has been shown to exacerbate unwanted effects. This highlights the importance of developing a fraction of A. paniculata with enhanced efficacy as an herbal-based medicine. In this study, the extraction and fractionation of A. paniculata, followed by quantitative analysis using high-performance liquid chromatography coupled with a DAD detector, were established to quantify the andrographolide and its derivative in each fraction. Biological activities, such as antioxidant, anticancer, antihypertensive, and anti-inflammatory activities, were evaluated to study their correlations with the quantification of active substances of A. paniculata extract and its fractions. The 50% methanolic fraction of A. paniculata exhibited the best cytotoxic activities against CACO-2 cells, as well as the best anti-inflammatory and antihypertensive activities compared to other extracts. The 50% methanolic fraction also displayed the highest quantification of its main active compound, andrographolide, and its derivatives, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and andrograpanin, among others.

7.
Mar Drugs ; 21(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36827128

RESUMO

Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Animais , Materiais Biocompatíveis , Colágeno , Medicina Regenerativa , Mamíferos
8.
Mar Drugs ; 21(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36662223

RESUMO

The search for new antibiotics against drug-resistant microbes has been expanded to marine bacteria. Marine bacteria have been proven to be a prolific source of a myriad of novel compounds with potential biological activities. Therefore, this review highlights novel and bioactive compounds from marine bacteria reported during the period of January 2016 to December 2021. Published articles containing novel marine bacterial secondary metabolites that are active against drug-resistant pathogens were collected. Previously described compounds (prior to January 2016) are not included in this review. Unreported compounds during this period that exhibited activity against pathogenic microbes were discussed and compared in order to find the cue of the structure-bioactivity relationship. The results showed that Streptomyces are the most studied bacteria with undescribed bioactive compounds, followed by other genera in the Actinobacteria. We have categorized the structures of the compounds in the present review into four groups, based on their biosynthetic origins, as polyketide derivatives, amino acid derivatives, terpenoids, as well as compounds with mixed origin. These compounds were active against one or more drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), vancomycin-resistant Enterococci (VRE), multidrug-resistant Mycobacterium tuberculosis (MDR-TB), and amphotericin B-resistant Candida albicans. In addition, some of the compounds also showed activity against biofilm formation of the test bacteria. Some previously undescribed compounds, isolated from marine-derived bacteria during this period, could have a good potential as lead compounds for the development of drug candidates to overcome multidrug-resistant pathogens.


Assuntos
Actinobacteria , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana
9.
Mar Drugs ; 20(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35877699

RESUMO

Marine angiosperms produce a wide variety of secondary metabolites with unique structural features that have the potential to be developed as effective and potent drugs for various diseases. Recently, research trends in secondary metabolites have led to drug discovery with an emphasis on their pharmacological activity. Among marine angiosperms, seagrasses have been utilized for a variety of remedial purposes, such as treating fevers, mental disorders, wounds, skin diseases, muscle pain, and stomach problems. Hence, it is essential to study their bioactive metabolites, medical properties, and underlying mechanisms when considering their pharmacological activity. However, there is a scarcity of studies on the compilation of existing work on their pharmacological uses, pharmacological pathways, and bioactive compounds. This review aims to compile the pharmacological activities of numerous seagrass species, their secondary metabolites, pharmacological properties, and mechanism of action. In conclusion, this review highlights the potency of seagrasses as a promising source of natural therapeutical products for preventing or inhibiting human diseases.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Humanos
10.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208968

RESUMO

An antiviral agent is urgently needed based on the high probability of the emergence and re-emergence of future viral disease, highlighted by the recent global COVID-19 pandemic. The emergence may be seen in the discovery of the Alpha, Beta, Gamma, Delta, and recently discovered Omicron variants of SARS-CoV-2. The need for strategies besides testing and isolation, social distancing, and vaccine development is clear. One of the strategies includes searching for an antiviral agent that provides effective results without toxicity, which is well-presented by significant results for carrageenan nasal spray in providing efficacy against human coronavirus-infected patients. As the primary producer of sulfated polysaccharides, marine plants, including macro- and microalgae, offer versatility in culture, production, and post-isolation development in obtaining the needed antiviral agent. Therefore, this review will describe an attempt to highlight the search for practical and safe antiviral agents from algal-based sulfated polysaccharides and to unveil their features for future development.


Assuntos
Antivirais , COVID-19/terapia , Microalgas/química , Pandemias , Polissacarídeos , SARS-CoV-2 , Antivirais/química , Antivirais/uso terapêutico , COVID-19/epidemiologia , Humanos , Polissacarídeos/química , Polissacarídeos/uso terapêutico
11.
Mar Drugs ; 20(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35049922

RESUMO

Colorectal cancer is one of the most common cancers diagnosed in the world. Chemotheraphy is one of the most common methods used for the pharmacological treatment of this cancer patients. Nevertheless, the adverse effect of chemotherapy is not optimized for improving the quality of life of people who are older, who are the most vulnerable subpopulation. This review presents recent updates regarding secondary metabolites derived from marine fungi and actinobacteria as novel alternatives for cytotoxic agents against colorectal cancer cell lines HCT116, HT29, HCT15, RKO, Caco-2, and SW480. The observed marine-derived fungi were from the species Aspergillus sp., Penicillium sp., Neosartorya sp., Dichotomomyces sp., Paradendryphiella sp., and Westerdykella sp. Additionally, Streptomyces sp. and Nocardiopsis sp. are actinobacteria discussed in this study. Seventy one compounds reviewed in this study were grouped on the basis of their chemical structures. Indole alkaloids and diketopiperazines made up most compounds with higher potencies when compared with other groups. The potency of indole alkaloids and diketopiperazines was most probably due to halogen-based functional groups and sulfide groups, respectively.


Assuntos
Actinobacteria , Antineoplásicos/farmacologia , Dicetopiperazinas/farmacologia , Fungos , Alcaloides Indólicos/farmacologia , Animais , Antineoplásicos/química , Organismos Aquáticos , Células CACO-2/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Dicetopiperazinas/química , Células HCT116/efeitos dos fármacos , Humanos , Alcaloides Indólicos/química
12.
J Food Sci Technol ; 59(1): 239-248, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068568

RESUMO

Sea cucumbers are marine organisms with uses in food, cosmetics, and medicine. This study aimed to identify Indonesian sea cucumbers with high antioxidant and antibacterial activities. Twenty-one sea cucumber species were used for this study. Antioxidant capacity was evaluated using the 2,2-diphenyl-ß-picrylhydrazine assay. Antibacterial activity was assessed using the disk diffusion assay, whereas the resazurin-based assay was employed to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Volatile compounds possibly related to the biological activity of sea cucumbers were analyzed via gas chromatography-mass spectrometry (GC-MS). Holothuria atra had the strongest antioxidant capacity (IC50 = 14.22 ± 0.87 µg µL-1). Stichopus vastus displayed the best antibacterial activity against Staphylococcus aureus, whereas Stichopus ocellatus extract was most potent against Vibrio cholerae. Holothuria albiventer, which controlled Bacillus subtilis most effectively while also being active against S. aureus and V. cholerae, was the optimal antimicrobial species. H. albiventer and Actinopyga echinites inhibited B. subtilis growth at 12.5 µg µL-1. The MBC tests indicated that the antibacterial activities of sea cucumbers at the MIC were bacteriostatic, rather than bactericidal, in nature. GC-MS analysis uncovered long-chain fatty acids that might be associated with the antibacterial activities of sea cucumbers.

13.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34832884

RESUMO

Andrographispaniculata (Burm.f.) Nees has been used as a traditional medicine in Asian countries, especially China, India, Vietnam, Malaysia, and Indonesia. This herbaceous plant extract contains active compounds with multiple biological activities against various diseases, including the flu, colds, fever, diabetes, hypertension, and cancer. Several isolated compounds from A. paniculata, such as andrographolide and its analogs, have attracted much interest for their potential treatment against several virus infections, including SARS-CoV-2. The mechanisms of action in inhibiting viral infections can be categorized into several types, including regulating the viral entry stage, gene replication, and the formation of mature functional proteins. The efficacy of andrographolide as an antiviral candidate was further investigated since the phytoconstituents of A. paniculata exhibit various physicochemical characteristics, including low solubility and low bioavailability. A discussion on the delivery systems of these active compounds could accelerate their development for commercial applications as antiviral drugs. This study critically reviewed the current antiviral development based on andrographolide and its derivative compounds, especially on their mechanism of action as antiviral drugs and drug delivery systems.

14.
Nat Prod Bioprospect ; 11(3): 243-306, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890249

RESUMO

Soft corals are well-known as excellent sources of marine-derived natural products. Among them, members of the genera Sarcophyton, Sinularia, and Lobophytum are especially attractive targets for marine natural product research. In this review, we reported the marine-derived natural products called cembranoids isolated from soft corals, including the genera Sarcophyton, Sinularia, and Lobophytum. Here, we reviewed 72 reports published between 2016 and 2020, comprising 360 compounds, of which 260 are new compounds and 100 are previously known compounds with newly recognized activities. The novelty of the organic molecules and their relevant biological activities, delivered by the year of publication, are presented. Among the genera presented in this report, Sarcophyton spp. produce the most cembranoid diterpenes; thus, they are considered as the most important soft corals for marine natural product research. Cembranoids display diverse biological activities, including anti-cancer, anti-bacterial, and anti-inflammatory. As cembranoids have been credited with a broad range of biological activities, they present a huge potential for the development of various drugs with potential health and ecological benefits.

15.
Molecules ; 26(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801617

RESUMO

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007-2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Assuntos
Antozoários/química , Anti-Infecciosos/química , Antineoplásicos/química , Produtos Biológicos/química , Poríferos/química , Urocordados/química , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Antozoários/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Organismos Aquáticos , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Humanos , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Poríferos/metabolismo , Metabolismo Secundário/fisiologia , Relação Estrutura-Atividade , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Urocordados/metabolismo
16.
Mar Drugs ; 20(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35049859

RESUMO

Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016-2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.


Assuntos
Organismos Aquáticos , Alcaloides Indólicos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Alcaloides Indólicos/química
17.
Mar Drugs ; 17(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083316

RESUMO

A deep study of the metabolic content of the tunicate Polycarpa aurata, collected from Indonesian coast, afforded the isolation of two novel alkaloids, polyaurines A (1) and B (2), along with two new p-substituted benzoyl derivatives (3 and 4) and four known compounds (5-8). The structural elucidation of the new secondary metabolites was assigned by 1D, 2D NMR, and HRESIMS techniques. Computational studies resulted a useful tool to unambiguously determine in polyaurine B the presence of rarely found 1,2,4-thiadiazole ring. The effects of polyaurines A and B on mammalian cells growth and on the viability of different blood-dwelling Schistosoma mansoni (phylum: Platyhelminthes) stages, as well as egg production, were evaluated. Both compounds resulted not cytotoxic; interestingly some of the eggs produced by polyaurine A-treated adult pairs in vitro are smaller, deformed, and/or fragmented; therefore, polyaurine A could represent an interesting bioactive natural molecule to be further investigated.


Assuntos
Schistosoma mansoni/efeitos dos fármacos , Tiadiazóis/química , Tiadiazóis/farmacologia , Urocordados/química , Alcaloides/química , Alcaloides/farmacologia , Animais , Indonésia , Concentração Inibidora 50 , Urocordados/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-30799798

RESUMO

BACKGROUND: As a marine organism, soft corals can be utilized to be various bioactive substances, especially terpenoids and steroids. The soft corals family which produces bioactive generally come from clavulariidae, alcyoniidae, nephtheidae and xeniidae family. OBJECTIVE: To investigate the bioactivity of Nitric Oxide (NO) inhibitor release from soft coral crude extracts of Sinularia sp. (SCA), Nephthea sp. (SCB), Sarcophyton sp. (SCC), Sarcophyton sp. (SCD), Sinularia sp. (SCE) and Sinularia sp. (SCF). MATERIALS AND METHODS: Soft coral is collected from Palu Bay (Central Sulawesi). NO inhibitory release activity measured according to the Griess reaction. Soft corals sample macerated with 1:2 (w/v). Then, Soft coral extracts with the best NO Inhibitor activity partitioned with Dichloromethane, Ethyl acetate, and n-butanol. The bioactive of all crude extracts were identified by GC-MS to find compounds with anti-inflammatory potential. RESULTS: Sarcophyton sp. (SCC) and Sinularia sp. (SCF) are able to inhibit NO concentrations of 0.22 ± 0.04 and 0.20 ± 0.04 µM at 20 mg/mL, respectively. The chemical constituents determined and showed the potential as anti-inflammatory in the crude of Sinularia sp. (SCA) were Octacosane (3.25%). In Nephthea sp., (SCB) were Cyclohexene, 6-ethenyl-6- methyl-1-(1-methylethyl)-3-(1-methylethylidene)-,(S)- (0.55%); Azulene, 1,2,3,4,5,6,7,8- octahydro-1,4-dimethyl-7-(1-methylethylidene)-, (1S-cis)- (0.53%); and 1,7,7-Trimethyl- 2-vinylbicyclo[2.2.1]hept-2-ene (4.72%). In Sarcophyton sp, (SCC) were Eicosane (0.12%); Nonacosane (10.7%); 14(ß)-Pregnane (0.87%); Octacosane 6.39%); and Tricosane (1.53%). In Sarcophyton sp. (SCD) were 14(ß)-Pregnane (2.69%); and Octadecane (27.43%). In crude of Sinularia sp. (SCE) were Oleic Acid (0.63%); 7,10-Hexadecadienoic acid, methyl ester (0.54%); 14(ß)-Pregnane (1.07%); 5,8,11,14-Eicosatetraenoic acid, ethyl ester, (all-Z)- (4.60%); Octacosane (7.75%); and 1,2-Benzisothiazole, 3-(hexahydro-1Hazepin- 1-yl)-, 1,1-dioxide (1.23%). In the crude of Sinularia sp., (SCF) were Oxirane, decyl- (1.38%); Nonacosane (0.57%); Cyclohexanol, 5-methyl-2-(1-methylethenyl)- (0.61%); 14B-Pregnane (0.76%); and Tetratriacontane (1.02%). CONCLUSION: The extract of Sarcophyton sp. (SCC) and Sinularia sp. (SCF) showed the best NO inhibitory release activity. This study is making soft corals from Central Sulawesi, Indonesia can become a potential organism in the discovery and development of bioactive substances anti-inflammatory.


Assuntos
Antozoários/imunologia , Anti-Inflamatórios/farmacologia , Terapia Biológica/tendências , Sequestradores de Radicais Livres/farmacologia , Óxido Nítrico/metabolismo , Alcanos , Animais , Antozoários/química , Extratos Celulares , Cicloexenos , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/química , Indonésia
19.
J Nat Prod ; 79(7): 1762-8, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27352042

RESUMO

An expeditious isolation method for the cembrane diterpene alcohols incensol (1a) and serratol (2) has been developed from respectively African and Indian frankincense. The two native alcohols and a series of semisynthetic derivatives of incensol were evaluated for transient receptor potential vanilloid 3 (TRPV3) activation and the inhibition of NF-κB, the putative molecular targets underlying the psychotropic and anti-inflammatory activities of incensol acetate (IA, 1b). Serratol (2) was the most potent TRPV3 activator, outperforming by 2 orders of magnitude the reference agonist thymol and by 1 order of magnitude incensol acetate (1b). Acylation, epimerization, and oxidation did not significantly improve the affinity of incensol for TRPV3, while NF-κB inhibition, marginal for both natural alcohols, could be improved by esterification of incensol (1a) with lipophilic acids. Interestingly, incensol (1a) but not IA (1b) was a potent inhibitor of STAT3, raising the possibility that hydrolysis to incensol (1a) might be involved in the in vivo biological activity of IA (1b). Serratol was not amenable to chemical modification, but some marine cembranoids related to the frankincense diterpenoids showed a certain degree of TRPV3-activating properties, qualifying the aliphatic macrocyclic cembrane skeleton as a selective chemotype to explore the pharmacology of TRPV3, a thermo-TRP otherwise resistant to modulation by small molecules.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Anti-Inflamatórios não Esteroides/química , Diterpenos/química , Franquincenso/química , Itália , Estrutura Molecular , Fármacos Neuroprotetores/química , Fator de Transcrição STAT3/antagonistas & inibidores , Relação Estrutura-Atividade , Canais de Cátion TRPV/efeitos dos fármacos
20.
Mar Drugs ; 10(11): 2435-47, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23203269

RESUMO

Leucettamols, bifunctionalized sphingoid-like compounds obtained from a marine sponge Leucetta sp., act as non-electrophilic activators of the TRPA1 channel and potent inhibitors of the icilin-mediated activation of the TRPM8 channel, while they are inactive on CB1, CB2 and TRPV1 receptors. Leucettamols represent the first compounds of marine origin to target TRPA1 and the first class of natural products to inhibit TRPM8 channels. The preparation of a small series of semi-synthetic derivatives revealed interesting details on the structure-activity relationships within this new chemotype of simple acyclic TRP modulators.


Assuntos
Poríferos/química , Esfingolipídeos/farmacologia , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Células HEK293 , Humanos , Ratos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Esfingolipídeos/química , Esfingolipídeos/isolamento & purificação , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA