Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947691

RESUMO

Rapid and sensitive detection of Dengue virus remains a critical challenge in global public health. This study presents the development and evaluation of a Zinc Oxide nanorod (ZnO NR)-surface-integrated microfluidic platform for the early detection of Dengue virus. Utilizing a seed-assisted hydrothermal synthesis method, high-purity ZnO NRs were synthesized, characterized by their hexagonal wurtzite structure and a high surface-to-volume ratio, offering abundant binding sites for bioconjugation. Further, a comparative analysis demonstrated that the ZnO NR substrate outperformed traditional bare glass substrates in functionalization efficiency with 4G2 monoclonal antibody (mAb). Subsequent optimization of the functionalization process identified 4% (3-Glycidyloxypropyl)trimethoxysilane (GPTMS) as the most effective surface modifier. The integration of this substrate within a herringbone-structured microfluidic platform resulted in a robust device for immunofluorescence detection of DENV-3. The limit of detection (LOD) for DENV-3 was observed to be as low as 3.1 × 10-4 ng/mL, highlighting the remarkable sensitivity of the ZnO NR-integrated microfluidic device. This study emphasizes the potential of ZnO NRs and the developed microfluidic platform for the early detection of DENV-3, with possible expansion to other biological targets, hence paving the way for enhanced public health responses and improved disease management strategies.

3.
J Virol ; 97(11): e0096323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37846984

RESUMO

IMPORTANCE: Currently licensed dengue vaccines do not induce long-term protection in children without previous exposure to dengue viruses in nature. These vaccines are based on selected attenuated strains of the four dengue serotypes and employed in combination for two or three consecutive doses. In our search for a better dengue vaccine candidate, live attenuated strains were followed by non-infectious virus-like particles or the plasmids that generate these particles upon injection into the body. This heterologous prime-boost immunization induced elevated levels of virus-specific antibodies and helped to prevent dengue virus infection in a high proportion of vaccinated macaques. In macaques that remained susceptible to dengue virus, distinct mechanisms were found to account for the immunization failures, providing a better understanding of vaccine actions. Additional studies in humans in the future may help to establish whether this combination approach represents a more effective means of preventing dengue by vaccination.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Anticorpos Antivirais , Vacinas contra Dengue/administração & dosagem , Macaca fascicularis , Imunização Secundária , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
4.
Microbiol Spectr ; 11(4): e0091823, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409936

RESUMO

Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future.


Assuntos
Vírus da Dengue , Dengue , Humanos , Epitopos , Anticorpos Antivirais , Dengue/diagnóstico , Dengue/prevenção & controle , Anticorpos Neutralizantes , Reações Cruzadas
5.
Virus Res ; 323: 199015, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36455752

RESUMO

Partial cleavage of a dengue virus envelope protein, prM, by furin results in a mixture of extracellular particles with variable levels of maturation and infectivity. Partially mature particles can infect leukocytes via interaction between the prM-anti-prM antibody complex with Fcγ receptors. Known prM epitopes involved in antibody-mediated infection are localized to the pr domain. In this study, a group of murine anti-prM monoclonal antibodies with strong infection-enhancing activity was found to reduce the focus size of subsets of multiple dengue serotypes that they could enhance. By employing sets of overlapping peptides, four antibodies recognizing 2-mercaptoethanol-insensitive epitopes were mapped to a common tetrapeptide located distantly in the b-c loop and furin binding site. Substitution mutations of each, or both, of the tetrapeptides in virus-like particles, however, failed to reduce binding. Further mapping experiments were performed using immature virus-like particles with abolished furin binding site to minimize the differential influence of various pr substitutions on pr-M cleavage. Reduction of antibody binding was detected when single alanine substitutions were introduced into the 'a' strand and 'c' strand of pr domain. These findings suggest that the pr 'a and c' strands region is the major binding site of these unusual focus size-reducing anti-prM antibodies.

6.
Sci Rep ; 12(1): 21548, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513793

RESUMO

The non-structural protein-1 (NS1) of dengue virus (DENV) contributes to several functions related to dengue disease pathogenesis as well as diagnostic applications. Antibodies against DENV NS1 can cross-react with other co-circulating flaviviruses, which may lead to incorrect diagnosis. Herein, five anti-DENV NS1 monoclonal antibodies (mAbs) were investigated. Four of them (1F11, 2E3, 1B2, and 4D2) cross-react with NS1 of all four DENV serotypes (pan-DENV mAbs), whereas the other (2E11) also reacts with NS1 of other flaviviruses (flavi-cross-reactive mAb). The binding epitopes recognized by these mAbs were found to overlap a region located on the disordered loop of the NS1 wing domain (amino acid residues 104 to 123). Fine epitope mapping employing phage display technology and alanine-substituted DENV2 NS1 mutants indicates the critical binding residues W115, K116, and K120 for the 2E11 mAb, which are conserved among flaviviruses. In contrast, the critical binding residues of four pan-DENV mAbs include both flavi-conserved residues (W115 to G119) and DENV-conserved flanking residues (K112, Y113, S114 and A121, K122). Our results highlight DENV-conserved residues in cross-reactive epitopes that distinguish pan-DENV antibodies from the flavi-cross-reactive antibody. These antibodies can be potentially applied to differential diagnosis of DENV from other flavivirus infections.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Humanos , Anticorpos Antivirais , Proteínas não Estruturais Virais/genética , Reações Cruzadas , Epitopos , Anticorpos Monoclonais
7.
J Virol Methods ; 308: 114577, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843366

RESUMO

Dengue virus (DENV) specific neutralizing and enhancing antibodies play crucial roles in dengue disease prevention and pathogenesis. DENV reporters are gaining popularity in the evaluation of these antibodies; their accessibility and acceptance may improve with more efficient production systems and indications of their antigenic equivalence to the wild-type virus. This study aimed to generate a replication competent luciferase-secreting DENV reporter (LucDENV2) and evaluate its feasibility in neutralizing and infection-enhancing antibody assays in comparison with wild-type DENV2, strain 16681, and a luciferase-secreting, single-round infectious DENV2 reporter (LucSIP). LucDENV2 replicated to similarly high levels as that of the parent 16681 virus in a commonly used mosquito cell line. LucDENV2 was neutralized in an antibody concentration-dependent manner by a monoclonal antibody specific to the flavivirus fusion loop and two antibodies specific to the E domain III, which closely resembled the neutralization patterns employing the LucSIP and wild-type DENV2. Parallel analysis of LucDENV2 and wild-type DENV2 revealed good agreement between the luciferase-based and focus-based neutralization and enhancement assays in a 96-well microplate format when employed against a set of clinical sera, suggesting comparable antigenic properties of LucDENV2 with those of the parent virus. The high-titer, replication competent, luciferase-secreting DENV reporter presented here should be a useful tool for fast and reliable quantitation of neutralizing and infection-enhancing antibodies in populations living in DENV-endemic areas.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Bloqueadores , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Luciferases/genética , Proteínas do Envelope Viral
8.
PLoS One ; 17(5): e0266136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617160

RESUMO

Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the ß-ladder domain (amino acid residues 178-273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Reações Cruzadas , Vírus da Dengue/genética , Epitopos , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Proteínas Recombinantes , Proteínas não Estruturais Virais/genética
9.
PLoS Negl Trop Dis ; 16(4): e0010266, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389998

RESUMO

Laboratory diagnosis of dengue virus (DENV) infection including DENV serotyping requires skilled labor and well-equipped settings. DENV NS1 lateral flow rapid test (LFT) provides simplicity but lacks ability to identify serotype. A simple, economical, point-of-care device for serotyping is still needed. We present a gravity driven, smartphone compatible, microfluidic device using microcapillary film (MCF) to perform multiplex serotype-specific immunoassay detection of dengue virus NS1. A novel device-termed Cygnus-with a stackable design allows analysis of 1 to 12 samples in parallel in 40 minutes. A sandwich enzyme immunoassay was developed to specifically detect NS1 of all four DENV serotypes in one 60-µl plasma sample. This test aims to bridge the gap between rapid LFT and laboratory microplate ELISAs in terms of sensitivity, usability, accessibility and speed. The Cygnus NS1 assay was evaluated with retrospective undiluted plasma samples from 205 DENV infected patients alongside 50 febrile illness negative controls. Against the gold standard RT-PCR, clinical sensitivity for Cygnus was 82% in overall (with 78, 78, 80 and 76% for DENV1-4, respectively), comparable to an in-house serotyping NS1 microplate ELISA (82% vs 83%) but superior to commercial NS1-LFT (82% vs 74%). Specificity of the Cygnus device was 86%, lower than that of NS1-microplate ELISA and NS1-LFT (100% and 98%, respectively). For Cygnus positive samples, identification of DENV serotypes DENV2-4 matched those by RT-PCR by 100%, but for DENV1 capillaries false positives were seen, suggesting an improved DENV1 capture antibody is needed to increase specificity. Overall performance of Cygnus showed substantial agreement to NS1-microplate ELISA (κ = 0.68, 95%CI 0.58-0.77) and NS1-LFT (κ = 0.71, 95%CI 0.63-0.80). Although further refinement for DENV-1 NS1 detection is needed, the advantages of multiplexing and rapid processing time, this Cygnus device could deliver point-of-care NS1 antigen testing including serotyping for timely DENV diagnosis for epidemic surveillance and outbreak prediction.


Assuntos
Vírus da Dengue , Dengue , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Sorogrupo , Smartphone , Proteínas não Estruturais Virais/genética
10.
ACS Sens ; 6(12): 4338-4348, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34854666

RESUMO

A range of biosensing techniques including immunoassays are routinely used for quantitation of analytes in biological samples and available in a range of formats, from centralized lab testing (e.g., microplate enzyme-linked immunosorbent assay (ELISA)) to automated point-of-care (POC) and lateral flow immunochromatographic tests. High analytical performance is intrinsically linked to the use of a sequence of reagent and washing steps, yet this is extremely challenging to deliver at the POC without a high level of fluidic control involving, e.g., automation, fluidic pumping, or manual fluid handling/pipetting. Here we introduce a microfluidic siphon concept that conceptualizes a multistep ″dipstick″ for quantitative, enzymatically amplified immunoassays using a strip of microporous or microbored material. We demonstrated that gravity-driven siphon flow can be realized in single-bore glass capillaries, a multibored microcapillary film, and a glass fiber porous membrane. In contrast to other POC devices proposed to date, the operation of the siphon is only dependent on the hydrostatic liquid pressure (gravity) and not capillary forces, and the unique stepwise approach to the delivery of the sample and immunoassay reagents results in zero dead volume in the device, no reagent overlap or carryover, and full start/stop fluid control. We demonstrated applications of a 10-bore microfluidic siphon as a portable ELISA system without compromised quantitative capabilities in two global diagnostic applications: (1) a four-plex sandwich ELISA for rapid smartphone dengue serotype identification by serotype-specific dengue virus NS1 antigen detection, relevant for acute dengue fever diagnosis, and (2) quantitation of anti-SARS-CoV-2 IgG and IgM titers in spiked serum samples. Diagnostic siphons provide the opportunity for high-performance immunoassay testing outside sophisticated laboratories, meeting the rapidly changing global clinical and public health needs.


Assuntos
COVID-19 , Microfluídica , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , SARS-CoV-2
11.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372598

RESUMO

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


Assuntos
Vírus da Dengue/química , Vírus da Dengue/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Cromatografia Líquida , Dengue/virologia , Vírus da Dengue/genética , Células Hep G2 , Humanos , Cinética , Fosforilação , Ligação Proteica , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral
12.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410905

RESUMO

The capsid protein (C) of dengue virus is required for viral infectivity as it packages viral RNA genome into infectious particles. C exists as a homodimer that forms via hydrophobic interactions between the α2 and α4 helices of monomers. To identify C region(s) important for virus particle production, a complementation system was employed in which single-round infectious particles are generated by trans-encapsidation of a viral C-deleted genome by recombinant C expressed in mosquito cells. Mutants harbouring a complete α3 deletion, or a dual Ile65-/Trp69-to-Ala substitution in the α3 helix, exhibited reduced production of infectious virus. Unexpectedly, higher proportions of oligomeric C were detected in cells expressing both mutated forms as compared with the wild-type counterpart, indicating that the α3 helix, through its internal hydrophobic residues, may down-modulate oligomerization of C during particle formation. Compared with wild-type C, the double Ile65-/Trp69 to Ala mutations appeared to hamper viral infectivity but not C and genomic RNA incorporation into the pseudo-infectious virus particles, suggesting that increased C oligomerization may impair DENV replication at the cell entry step.


Assuntos
Proteínas do Capsídeo , Capsídeo/metabolismo , Vírus da Dengue/metabolismo , Dengue/virologia , Aedes , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Humanos , Células Vero , Montagem de Vírus , Replicação Viral
13.
Am J Trop Med Hyg ; 105(3): 771-776, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280136

RESUMO

Dengue (DENV) infections are a public health concern worldwide and thus early diagnosis is important to ensure appropriate clinical management. The rapid diagnostic test (RDT) targets nonstructural protein 1 (NS1) detection and is the main tool used for diagnostic purpose. In this study, we evaluated the performance of a new rapid and semi-quantitative microfluidic DENV NS1 immuno-magnetic agglutination assay or IMA (ViroTrack Dengue Acute, BluSense Diagnostics, Copenhagen, Denmark). We studied 233 subjects confirmed to have DENV infection (by a real-time reverse transcriptase polymerase chain reaction) and 200 control samples were taken from patients with confirmed diagnoses of other febrile illnesses, in Thailand. Samples were tested using the NS1 antigen (Ag) detection methods: in-house NS1 Ag ELISA (ELISA), SD BIOLINE Dengue NS1 Ag RDT (ICT), and ViroTrack Dengue Acute (IMA). Sensitivities of these tests were 86.3%, 78.9%, and 85.5%, respectively. All tests showed high specificity (100%, 99%, and 97% for ELISA, ICT, and IMA, respectively). The sensitivities of both RDTs were affected by the low sensitivity to DENV-2 and DENV-4. NS1 Ag was detected in every patient on day 1 and day 2 after onset of illness by ELISA and IMA with a decline in detection rates over time after day 6 of illness. NS1 detection rate using ICT decreased from 100% on day 1 of illness to 98.6% on day 2 after onset of illness. By day 6, the detection rate was 45.9%. Thus, IMA performed better than ICT for early and rapid diagnosis of DENV infections in endemic countries.


Assuntos
Antígenos Virais/imunologia , Vírus da Dengue/imunologia , Dengue/diagnóstico , Proteínas não Estruturais Virais/imunologia , Adolescente , Adulto , Idoso , Testes de Aglutinação , Antígenos Virais/sangue , Dengue/sangue , Feminino , Glicoproteínas/sangue , Glicoproteínas/imunologia , Humanos , Dispositivos Lab-On-A-Chip , Imãs , Masculino , Procedimentos Analíticos em Microchip , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Testes Sorológicos , Proteínas não Estruturais Virais/sangue , Adulto Jovem
14.
J Virol Methods ; 291: 114119, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662412

RESUMO

Flavivirus reporters provide a robust tool for viral pathogenesis studies, anti-viral drug screening, disease diagnosis and functional antibody assays. In this study, we generated a luciferase-secreting, single-round reporter virus by replacing the capsid coding region in a DENV-2 genome with the secretory form of Lucia luciferase gene to produce infectious viral particles in a stable capsid-expressing mosquito cell line. Replication of the reporter virus in trans-complementing mosquito cells was sustained for up to two weeks. There were strong correlations between the extracellular luciferase activity and infectious reporter virus inocula upon infection of mosquito and mammalian cell lines with graded quantities of the reporter virus. A set of anti-E and anti-prM monoclonal antibodies affected the infectivity of reporter virus with similar dose-effect relationships as the parent virus. This simplified version of DENV-2 reporter provides a rapid and reliable method for the detection of neutralizing and infection-enhancing antibodies against dengue virus.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Animais , Anticorpos Bloqueadores , Anticorpos Antivirais , Dengue/diagnóstico , Vírus da Dengue/genética , Luciferases/genética
15.
PLoS Negl Trop Dis ; 15(2): e0009065, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635874

RESUMO

Dengue hemorrhagic fever (DHF) is caused by infection with dengue virus (DENV). Four different serotypes (DENV1-4) co-circulate in dengue endemic areas. The viral RNA genome-based reverse-transcription PCR (RT-PCR) is the most widely used method to identify DENV serotypes in patient specimens. However, the non-structural protein 1 (NS1) antigen as a biomarker for DENV serotyping is an emerging alternative method. We modified the serotyping-NS1-enzyme linked immunosorbent assay (stNS1-ELISA) from the originally established assay which had limited sensitivity overall and poor specificity for the DENV2 serotype. Here, four biotinylated serotype-specific antibodies were applied, including an entirely new design for detection of DENV2. Prediction of the infecting serotype of retrospective acute-phase plasma from dengue patients revealed 100% concordance with the standard RT-PCR method for all four serotypes and 78% overall sensitivity (156/200). The sensitivity of DENV1 NS1 detection was greatly improved (from 62% to 90%) by the addition of a DENV1/DENV3 sub-complex antibody pair. Inclusive of five antibody pairs, the stNS1-ELISA (plus) method showed an overall increased sensitivity to 85.5% (171/200). With the same clinical specimens, a commercial NS1 rapid diagnostic test (NS1-RDT) showed 72% sensitivity (147/200), significantly lower than the stNS1-ELISA (plus) performance. In conclusion, the stNS1-ELISA (plus) is an improved method for prediction of DENV serotype and for overall sensitivity. It could be an alternative assay not only for early dengue diagnosis, but also for serotype identification especially in remote resource-limited dengue endemic areas.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vírus da Dengue/imunologia , Dengue/diagnóstico , Dengue/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Sorotipagem/métodos , Anticorpos Monoclonais/imunologia , Dengue/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Sorogrupo , Proteínas não Estruturais Virais/imunologia
16.
Clin Infect Dis ; 72(10): e586-e593, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462580

RESUMO

BACKGROUND: Dengue is the most significant mosquito-borne viral disease; there are no specific therapeutics. The antiparasitic drug ivermectin efficiently inhibits the replication of all 4 dengue virus serotypes in vitro. METHODS: We conducted 2 consecutive randomized, double-blind, placebo-controlled trials in adult dengue patients to evaluate safety and virological and clinical efficacies of ivermectin. After a phase 2 trial with 2 or 3 days of 1 daily dose of 400 µg/kg ivermectin, we continued with a phase 3, placebo-controlled trial with 3 days of 400 µg/kg ivermectin. RESULTS: The phase 2 trial showed a trend in reduction of plasma nonstructural protein 1 (NS1) clearance time in the 3-day ivermectin group compared with placebo. Combining phase 2 and 3 trials, 203 patients were included in the intention to treat analysis (100 and 103 patients receiving ivermectin and placebo, respectively). Dengue hemorrhagic fever occurred in 24 (24.0%) of ivermectin-treated patients and 32 (31.1%) patients receiving placebo (P = .260). The median (95% confidence interval [CI]) clearance time of NS1 antigenemia was shorter in the ivermectin group (71.5 [95% CI 59.9-84.0] hours vs 95.8 [95% CI 83.9-120.0] hours, P = .014). At discharge, 72.0% and 47.6% of patients in the ivermectin and placebo groups, respectively had undetectable plasma NS1 (P = .001). There were no differences in the viremia clearance time and incidence of adverse events between the 2 groups. CONCLUSIONS: A 3-day 1 daily dose of 400 µg/kg oral ivermectin was safe and accelerated NS1 antigenemia clearance in dengue patients. However, clinical efficacy of ivermectin was not observed at this dosage regimen.


Assuntos
Dengue , Ivermectina , Adulto , Animais , Antiparasitários/uso terapêutico , Dengue/tratamento farmacológico , Método Duplo-Cego , Humanos , Ivermectina/uso terapêutico , Proteínas não Estruturais Virais , Viremia
17.
Asian Pac J Allergy Immunol ; 39(4): 287-295, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31175718

RESUMO

BACKGROUND: Specific binding to target protein epitopes by a mouse monoclonal antibody (mAb) relies on its variable domains. However, the isolation of functional variable gene transcripts is sometimes hindered by co-expression of aberrant transcripts in hybridoma cells. OBJECTIVE: To develop general strategies for identifying the functional variable transcripts of both heavy (VH) and kappa light (Vκ) chains from mouse hybridomas. METHODS: VH and Vκ genes of anti-dengue hybridoma clones were PCR-amplified using set of degenerate primers covering all mouse immunoglobulin families. Vκ amplicons were additionally digested with BciVI to eliminate aberrant Vκ transcripts. The productive VH and Vκ sequences were identified by Immunogenetics (IMGT) database analysis and cloned into a dual human IgG expression vector to generate chimeric antibodies (chAbs) in mammalian cells. The reactivity of chAbs was tested by immunoblot and immunofluorescent assays. RESULTS: Among 17 tested hybridoma clones, 400 bp Vκ amplicons were obtained using eight different Vκ primers. Amplicons from productive Vκ transcripts are resistant to BciVI digestion, whereas BciVI-digested amplicons indicated aberrant Vκ transcripts. 500-bp productive VH amplicons could be obtained from all clones using a set of five VH primers. The productive VH/Vκ genes of three anti-dengue NS1 mAbs (m2G6, m1F11 and m1A4) were cloned and mouse-human chAbs were generated. The binding reactivities of the chAbs to dengue NS1 were similar to the original mAbs. CONCLUSIONS: A general protocol to identify productive/functional VH and Vκ genes was demonstrated. The method is useful for producing chAbs and genetic archiving of valuable hybridoma cell lines.


Assuntos
Anticorpos Monoclonais , Região Variável de Imunoglobulina , Animais , Sequência de Bases , Digestão , Hibridomas , Região Variável de Imunoglobulina/genética , Camundongos
18.
PLoS Negl Trop Dis ; 14(11): e0008835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216752

RESUMO

Suitable cell models are essential to advance our understanding of the pathogenesis of liver diseases and the development of therapeutic strategies. Primary human hepatocytes (PHHs), the most ideal hepatic model, are commercially available, but they are expensive and vary from lot-to-lot which confounds their utility. We have recently developed an immortalized hepatocyte-like cell line (imHC) from human mesenchymal stem cells, and tested it for use as a substitute model for hepatotropic infectious diseases. With a special interest in liver pathogenesis of viral infection, herein we determined the suitability of imHC as a host cell target for dengue virus (DENV) and as a model for anti-viral drug testing. We characterized the kinetics of DENV production, cellular responses to DENV infection (apoptosis, cytokine production and lipid droplet metabolism), and examined anti-viral drug effects in imHC cells with comparisons to the commonly used hepatoma cell lines (HepG2 and Huh-7) and PHHs. Our results showed that imHC cells had higher efficiencies in DENV replication and NS1 secretion as compared to HepG2 and Huh-7 cells. The kinetics of DENV infection in imHC cells showed a slower rate of apoptosis than the hepatoma cell lines and a certain similarity of cytokine profiles to PHHs. In imHC, DENV-induced alterations in levels of lipid droplets and triacylglycerols, a major component of lipid droplets, were more apparent than in hepatoma cell lines, suggesting active lipid metabolism in imHC. Significantly, responses to drugs with DENV inhibitory effects were greater in imHC cells than in HepG2 and Huh-7 cells. In conclusion, our findings suggest superior suitability of imHC as a new hepatocyte model for studying mechanisms underlying viral pathogenesis, liver diseases and drug effects.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Dengue/patologia , Hepatócitos/patologia , Hepatopatias/patologia , Fígado/virologia , Aedes , Animais , Antivirais/farmacologia , Apoptose/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Citocinas/metabolismo , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Células Hep G2 , Hepatócitos/virologia , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fígado/patologia , Hepatopatias/tratamento farmacológico , Hepatopatias/virologia , Receptores Virais/metabolismo , Triglicerídeos/análise , Células Vero , Replicação Viral/fisiologia
19.
Sci Rep ; 10(1): 12933, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737386

RESUMO

Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.


Assuntos
Antivirais , Vírus da Dengue/fisiologia , Dengue , Sistemas de Liberação de Medicamentos , Biblioteca de Peptídeos , Proteínas não Estruturais Virais , Replicação Viral/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Dengue/tratamento farmacológico , Dengue/metabolismo , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
20.
J Gen Virol ; 101(1): 59-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682220

RESUMO

Dengue virus assembly involves the encapsidation of genomic RNA by the capsid protein (C) and the acquisition of an envelope comprising the premembrane (prM) and envelope (E) glycoproteins. This rapid process, lacking in detectable nucleocapsid intermediates, may impose authentic C-prM-E arrangement as a prerequisite for efficient particle assembly. A mosquito cell-based complementation system was employed in this study to investigate the possibility that expression of the three structural proteins in trans allows the efficient production of a partially C-deleted dengue virus as compared to the presence of C alone. Following the transfection of ΔC56-capped RNA transcripts into C6/36 cells transiently expressing C or CprME, the production of the single-cycle virus was comparable. Subsequent propagation in the stable CprME-expressing clone, however, supported virus adaptation leading to acquisition of the L29P and S101F (PF) dual mutations in the C protein. The triple mutant, ΔC56(PF), exhibited enhanced levels of virus replication, specific infectivity and frequent increases of intracellular C dimer, as compared with ΔC56 in the CprME-clone. The PF mutations were associated with the accumulation of truncated CprM in ΔC56(PF)-infected cells, and uncleaved CprM as well as reduced intracellular C-dimer when the dual mutations were introduced into the wild-type dengue virus genetic background. These results indicate that the PF mutations may exert a replication-enhancing effect for the triple mutant virus by relieving the interference of trans-complementing structural proteins during viral assembly and suggest that the C-prM-E arrangement may be advantageous for pseudoinfectious virus production.


Assuntos
Vírus da Dengue/genética , Nucleocapsídeo/genética , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Montagem de Vírus/genética , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Dengue/virologia , RNA Viral/genética , Células Vero , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA