Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Thromb Haemost ; 22(5): 1433-1446, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331196

RESUMO

BACKGROUND: Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES: To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS: The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS: We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION: This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.


Assuntos
Ligas , Anticorpos Monoclonais , Fator XII , Fator XI , Stents , Trombose , Animais , Trombose/prevenção & controle , Trombose/sangue , Fator XII/metabolismo , Fator XII/antagonistas & inibidores , Fator XII/imunologia , Fator XI/antagonistas & inibidores , Fator XI/imunologia , Fator XI/metabolismo , Anticorpos Monoclonais/farmacologia , Humanos , Coagulação Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Fluxo Sanguíneo Regional , Fibrinolíticos/farmacologia
2.
Res Pract Thromb Haemost ; 8(1): 102276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38226339

RESUMO

Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.

3.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970718

RESUMO

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Assuntos
Neoplasias , Trombose , Humanos , Fator XI/metabolismo , Estudos Prospectivos , Trombose/etiologia , Trombose/prevenção & controle , Trombose/tratamento farmacológico , Hemorragia/induzido quimicamente , Catéteres/efeitos adversos , Neoplasias/tratamento farmacológico , Neoplasias/complicações
4.
Blood ; 143(15): 1445-1454, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874916

RESUMO

ABSTRACT: Unique among coagulation factors, the coagulation factor XI (FXI) arose through a duplication of the gene KLKB1, which encodes plasma prekallikrein. This evolutionary origin sets FXI apart structurally because it is a homodimer with 2 identical subunits composed of 4 apple and 1 catalytic domain. Each domain exhibits unique affinities for binding partners within the coagulation cascade, regulating the conversion of FXI to a serine protease as well as the selectivity of substrates cleaved by the active form of FXI. Beyond serving as the molecular nexus for the extrinsic and contact pathways to propagate thrombin generation by way of activating FIX, the function of FXI extends to contribute to barrier function, platelet activation, inflammation, and the immune response. Herein, we critically review the current understanding of the molecular biology of FXI, touching on some functional consequences at the cell, tissue, and organ level. We conclude each section by highlighting the DNA mutations within each domain that present as FXI deficiency. Together, a narrative review of the structure-function of the domains of FXI is imperative to understand the etiology of hemophilia C as well as to identify regions of FXI to safely inhibit the pathological function of activation or activity of FXI without compromising the physiologic role of FXI.


Assuntos
Deficiência do Fator XI , Fator XI , Humanos , Fator XI/genética , Deficiência do Fator XI/genética , Coagulação Sanguínea/genética , Domínio Catalítico , Trombina/metabolismo , Biologia
5.
Curr Opin Hematol ; 31(1): 32-38, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694771

RESUMO

PURPOSE OF REVIEW: This review summarizes the pathophysiology and potential therapeutic options for treatment of multiple sclerosis, a common neuronal demyelinating disorder affecting 2.2 million people worldwide. As an autoimmune disorder, multiple sclerosis is associated with neuroinflammation and increased permeability of the blood-brain barrier (BBB), although the cause linking multiple sclerosis with compromised barrier function remains ill-defined. It has been previously shown that coagulation factors, including thrombin and fibrin, exacerbate the inflammatory processes and permeability of the BBB. RECENT FINDINGS: Increased levels of the coagulation factor (F) XII have been found in patients presenting with relapsing-remitting multiple sclerosis, with a deleterious role for FXII being validated in murine model of multiple sclerosis, experimental autoimmune encephalitis (EAE). Recent work has uncovered a role for the major substrate activated by FXII and thrombin, FXI, in the disorder of EAE. The study found that pharmacological targeting of FXI decreased clinical symptoms, lymphocyte invasion, and white matter destruction in a multiple sclerosis model. SUMMARY: This review emphasizes the role of FXII and FXI in regulating barrier function and the immune response in neuroinflammation. These new findings broaden the potential for therapeutic utility of FXI inhibitors beyond thrombosis to include neuroinflammatory diseases associated with compromised BBB function, including multiple sclerosis.


Assuntos
Fator XI , Esclerose Múltipla , Humanos , Animais , Camundongos , Fator XII , Doenças Neuroinflamatórias , Trombina , Esclerose Múltipla/tratamento farmacológico
6.
Semin Thromb Hemost ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37044117

RESUMO

Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.

7.
Semin Thromb Hemost ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940715

RESUMO

Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.

8.
9.
Cell Mol Bioeng ; 15(3): 231-243, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35611166

RESUMO

Introduction: Inflammatory activation of the vascular endothelium leads to overexpression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), contributing to the pro-thrombotic state underpinning atherogenesis. While the role of TEC family kinases (TFKs) in mediating inflammatory cell and platelet activation is well defined, the role of TFKs in vascular endothelial activation remains unclear. We investigated the role of TFKs in endothelial cell activation in vitro and in a nonhuman primate model of diet-induced atherosclerosis in vivo. Methods and Results: In vitro, we found that ibrutinib blocked activation of the TFK member, BMX, by vascular endothelial growth factors (VEGF)-A in human aortic endothelial cells (HAECs). Blockade of BMX activation with ibrutinib or pharmacologically distinct BMX inhibitors eliminated the ability of VEGF-A to stimulate VCAM-1 expression in HAECs. We validated that treatment with ibrutinib inhibited TFK-mediated platelet activation and aggregation in both human and primate samples as measured using flow cytometry and light transmission aggregometry. We utilized contrast-enhanced ultrasound molecular imaging to measure platelet GPIbα and endothelial VCAM-1 expression in atherosclerosis-prone carotid arteries of obese nonhuman primates. We observed that the TFK inhibitor, ibrutinib, inhibited platelet deposition and endothelial cell activation in vivo. Conclusion: Herein we found that VEGF-A signals through BMX to induce VCAM-1 expression in endothelial cells, and that VCAM-1 expression is sensitive to ibrutinib in vitro and in atherosclerosis-prone carotid arteries in vivo. These findings suggest that TFKs may contribute to the pathogenesis of atherosclerosis and could represent a novel therapeutic target.

10.
J Thromb Haemost ; 20(6): 1350-1363, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352494

RESUMO

BACKGROUND: Biochemical reaction networks are self-regulated in part due to feedback activation mechanisms. The tissue factor (TF) pathway of blood coagulation is a complex reaction network controlled by multiple feedback loops that coalesce around the serine protease thrombin. OBJECTIVES: Our goal was to evaluate the relative contribution of the feedback activation of coagulation factor XI (FXI) in TF-mediated thrombin generation using a comprehensive systems-based analysis. MATERIALS AND METHODS: We developed a systems biology model that improves the existing Hockin-Mann (HM) model through an integrative approach of mathematical modeling and in vitro experiments. Thrombin generation measured using in vitro assays revealed that the feedback activation of FXI contributes to the propagation of thrombin generation based on the initial concentrations of TF or activated coagulation factor X (FXa). We utilized experimental data to improve the robustness of the HM model to capture thrombin generation kinetics without a role for FXI before including the feedback activation of FXI by thrombin to construct the extended (ext.) HM model. RESULTS AND CONCLUSIONS: Using the ext.HM model, we predicted that the contribution of positive feedback of FXI activation by thrombin can be abolished by selectively eliminating the inhibitory function of tissue factor pathway inhibitor (TFPI), a serine protease inhibitor of FXa and TF-activated factor VII (FVIIa) complex. This prediction from the ext.HM model was experimentally validated using thrombin generation assays with function blocking antibodies against TFPI and plasmas depleted of FXI. Together, our results demonstrate the applications of combining experimental and modeling techniques in predicting complex biochemical reaction systems.


Assuntos
Fator XI , Tromboplastina , Coagulação Sanguínea/fisiologia , Fator XI/metabolismo , Retroalimentação , Humanos , Trombina/metabolismo , Tromboplastina/metabolismo
11.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
12.
Blood ; 138(2): 178-189, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33598692

RESUMO

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Assuntos
Fator XII/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Anticorpos/uso terapêutico , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/microbiologia , Plaquetas/metabolismo , Microambiente Celular , Ativação do Complemento , Fator XII/imunologia , Feminino , Fibrinogênio/metabolismo , Temperatura Alta , Inflamação/complicações , Inflamação/patologia , Masculino , Insuficiência de Múltiplos Órgãos/imunologia , Papio , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Análise de Sobrevida
13.
Am J Physiol Cell Physiol ; 320(3): C365-C374, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471623

RESUMO

Factor XI (FXI) has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, whereas FXI is not essential for hemostasis but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in a purified system and increased coagulation Factor IX (FIX) activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by activated coagulation factor XII (FXIIa) and the activation of FXII by kallikrein (PKa). Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets, the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa [by FXIa-platelet membrane immunoprecipitation] showed that the interaction with platelets is zinc dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib. FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.


Assuntos
Plaquetas/metabolismo , Fator XIa/metabolismo , Adolescente , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação/fisiologia , Coagulação Sanguínea/fisiologia , Feminino , Hemostasia/fisiologia , Humanos , Masculino , Trombina/metabolismo , Trombose/metabolismo
14.
J Thromb Haemost ; 19(4): 1001-1017, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421301

RESUMO

BACKGROUND: Human coagulation factor (F) XI deficiency, a defect of the contact activation system, protects against venous thrombosis, stroke, and heart attack, whereas FXII, plasma prekallikrein, or kininogen deficiencies are asymptomatic. FXI deficiency, inhibition of FXI production, activated FXI (FXIa) inhibitors, and antibodies to FXI that interfere with FXI/FXII interactions reduce experimental thrombosis and inflammation. FXI inhibitors are antithrombotic in patients, and FXI and FXII deficiencies are atheroprotective in apolipoprotein E-deficient mice. OBJECTIVES: Investigate the effects of pharmacological targeting of FXI in experimental models of atherogenesis and established atherosclerosis. METHODS AND RESULTS: Low-density lipoprotein receptor-knockout (Ldlr-/- ) mice were administered high-fat diet (HFD) for 8 weeks; concomitantly, FXI was targeted with anti-FXI antibody (14E11) or FXI antisense oligonucleotide (ASO). 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas when compared with controls, and 14E11 also reduced aortic sinus lesions. In an established disease model, in which therapy was given after atherosclerosis had developed, Ldlr-/- mice were fed HFD for 8 weeks and then administered 14E11 or FXI-ASO weekly until 16 weeks on HFD. In this established disease model, 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas, but not in aortic sinus. In cultures of human endothelium, FXIa exposure disrupted VE-Cadherin expression and increased endothelial lipoprotein permeability. Strikingly, we found that 14E11 prevented the disruption of VE-Cadherin expression in aortic sinus lesions observed in the atherogenesis mouse model. CONCLUSION: Pharmacological targeting of FXI reduced atherogenesis in Ldlr-/- mice. Interference with the contact activation system may safely reduce development or progression of atherosclerosis.


Assuntos
Aterosclerose , Deficiência do Fator XI , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Coagulação Sanguínea , Fator XI/genética , Humanos , Lipoproteínas LDL , Camundongos , Receptores de LDL/genética
15.
Cardiovasc Eng Technol ; 11(4): 448-455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607901

RESUMO

PURPOSE: Crosslinked poly(vinyl alcohol) (PVA) is a biomaterial that can be used for multiple cardiovascular applications. The success of implanted biomaterials is contingent on the properties of the material. A crucial consideration for blood-contacting devices is their potential to incite thrombus formation, which is dependent on the material surface properties. The goal of this study was to quantify the effect of different crosslinking methods of PVA hydrogels on in vitro thrombogenicity. METHODS: PVA was manufactured using three different crosslinking methods: 30% sodium trimetaphosphate (STMP), three 24 h freeze-thaw cycles (FT), and 2% glutaraldehyde-crosslinked (GA) to produce STMP-PVA, FT-PVA and GA-PVA, respectively. Expanded polytetrafluoroethylene (ePTFE) was used as a clinical control. As markers of thrombus formation, the degree of coagulation factor (F) XII activation, fibrin formation, and platelet adhesion were measured. RESULTS: The GA-PVA material increased FXII activation in the presence of cofactors compared to vehicle and increase platelet adhesion compared to other PVA surfaces. The STMP-PVA and FT-PVA materials had equivalent degrees of FXII activation, fibrin formation and platelet adhesion. CONCLUSION: This work supports crosslinker dependent thrombogenicity of PVA hydrogels and advances our understanding of how the manufacturing of a PVA hydrogel affects its hemocompatibility.


Assuntos
Reagentes de Ligações Cruzadas/química , Congelamento , Glutaral/química , Polifosfatos/química , Álcool de Polivinil/química , Trombose/prevenção & controle , Materiais Biocompatíveis , Coagulação Sanguínea , Prótese Vascular , Reagentes de Ligações Cruzadas/toxicidade , Fator XIIa/metabolismo , Fibrinólise , Congelamento/efeitos adversos , Glutaral/toxicidade , Oclusão de Enxerto Vascular/sangue , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/prevenção & controle , Humanos , Hidrogéis , Teste de Materiais , Adesividade Plaquetária , Polifosfatos/toxicidade , Álcool de Polivinil/toxicidade , Desenho de Prótese , Propriedades de Superfície , Trombose/sangue , Trombose/etiologia
16.
Res Pract Thromb Haemost ; 4(2): 205-216, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32110750

RESUMO

BACKGROUND: The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES: We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS: A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS: The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS: FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.

17.
Arterioscler Thromb Vasc Biol ; 39(7): 1390-1401, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242030

RESUMO

Objective- Activation of coagulation FXI (factor XI) by FXIIa (activated factor XII) is a prothrombotic process. The endothelium is known to play an antithrombotic role by limiting thrombin generation and platelet activation. It is unknown whether the antithrombotic role of the endothelium includes sequestration of FXIa (activated factor XI) activity. This study aims to determine the role of endothelial cells (ECs) in the regulation of the intrinsic pathway of coagulation. Approach and Results- Using a chromogenic assay, we observed that human umbilical veins ECs selectively blocked FXIa yet supported kallikrein and FXIIa activity. Western blotting and mass spectrometry analyses revealed that FXIa formed a complex with endothelial PAI-1 (plasminogen activator inhibitor-1). Blocking endothelial PAI-1 increased the cleavage of a chromogenic substrate by FXIa and the capacity of FXIa to promote fibrin formation in plasma. Western blot and immunofluorescence analyses showed that FXIa-PAI-1 complexes were either released into the media or trafficked to the early and late endosomes and lysosomes of ECs. When baboons were challenged with Staphylococcus aureus to induce a prothrombotic phenotype, an increase in circulating FXIa-PAI-1 complex levels was detected by ELISA within 2 to 8 hours postchallenge. Conclusions- PAI-1 forms a complex with FXIa on ECs, blocking its activity and inducing the clearance and degradation of FXIa. Circulating FXIa-PAI-1 complexes were detected in a baboon model of S. aureus sepsis. Although ECs support kallikrein and FXIIa activity, inhibition of FXIa by ECs may promote the clearance of intravascular FXIa. Visual Overview- An online visual overview is available for this article.


Assuntos
Coagulação Sanguínea , Células Endoteliais/fisiologia , Fator XIa/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Fator XIa/antagonistas & inibidores , Fator XIa/química , Humanos , Papio ursinus , Inibidor 1 de Ativador de Plasminogênio/química
18.
Semin Thromb Hemost ; 45(5): 502-508, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31216587

RESUMO

Although anticoagulation without hemorrhage is a primary aim, this vision has remained as yet out of reach. Even despite the superior safety profile of the direct oral anticoagulants, hemorrhage remains a major risk of anticoagulation. Selective inhibition of the contact pathway of coagulation, specifically coagulation factor XI (FXI) and/or factor XII (FXII), has now substantial epidemiologic and preclinical data supporting the notion that these factors contribute to pathologic thrombosis and are yet primarily dispensable for in vivo hemostasis. In this way, targeting FXI and FXII may revolutionize the future anticoagulation landscape. Several drugs are under development for this purpose, including: ISIS 416858, a FXI antisense oligonucleotide which impairs hepatic synthesis of FXI; MAA868, a monoclonal antibody that binds the procoagulant enzymatic site of both zymogen and activated FXI (FXIa); BAY 1213790, a monoclonal antibody that binds the procoagulant enzymatic site of FXIa only; and AB023, a monoclonal antibody that inhibits activated FXII-mediated activation of FXI, along with two small molecules in clinical trials. Each of these drugs have demonstrated favorable safety profiles in their phases 1 and 2 studies to date, with preclinical data also supporting efficacy of abrogating thrombosis in various animal models. Other benefits of some of these drugs include once-monthly dosing and safety in patients with renal or hepatic impairment, while others offer quickly metabolized parenteral options, thus providing more convenient and widely available anticoagulation options. Though still far from the marketplace, drugs targeting FXI and FXII have the potential to usher in a new era of anticoagulation therapy.


Assuntos
Anticoagulantes/uso terapêutico , Ensaios Clínicos como Assunto , Fator XII/metabolismo , Fator XI/metabolismo , Hemostasia/efeitos dos fármacos , Trombose/sangue , Anticoagulantes/farmacologia , Humanos
19.
Arterioscler Thromb Vasc Biol ; 39(4): 799-809, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700130

RESUMO

Objective- Factor XI (FXI) contributes to thrombotic disease while playing a limited role in normal hemostasis. We generated a unique, humanized anti-FXI antibody, AB023, which blocks factor XIIa-mediated FXI activation without inhibiting FXI activation by thrombin or the procoagulant function of FXIa. We sought to confirm the antithrombotic activity of AB023 in a baboon thrombosis model and to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adult subjects. Approach and Results- In a primate model of acute vascular graft thrombosis, AB023 reduced platelet and fibrin accumulation within the grafts by >75%. To evaluate the safety of AB023, we performed a first-in-human study in healthy adult volunteers without any serious adverse events. Overall, 10 of 21 (48%) subjects experienced 20 treatment-emergent adverse events, with 7 of 16 (44%) subjects following active treatment and 3 of 5 (60%) subjects following placebo. AB023 did not increase bleeding or prothrombin times. Anticoagulation was verified by a saturable ≈2-fold prolongation of the partial thromboplastin time for over 1 month after the highest dose. Conclusions- AB023, which inhibits contact activation-initiated blood coagulation in vitro and experimental thrombus formation in primates, produced a dose-dependent duration of limited anticoagulation without drug-related adverse effects in a phase 1 trial. When put in context with earlier observations suggesting that FXI contributes to venous thromboembolism and cardiovascular disease, although contributing minimally to hemostasis, our data further justify clinical evaluation of AB023 in conditions where contact-initiated FXI activation is suspected to have a pathogenic role. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03097341.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticoagulantes/uso terapêutico , Fator XI/antagonistas & inibidores , Fator XIa/fisiologia , Fibrinolíticos/uso terapêutico , Adulto , Animais , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticoagulantes/efeitos adversos , Anticoagulantes/imunologia , Anticoagulantes/farmacologia , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , Fator XI/imunologia , Fator XIIa/fisiologia , Fibrinolíticos/efeitos adversos , Fibrinolíticos/imunologia , Fibrinolíticos/farmacologia , Oclusão de Enxerto Vascular/tratamento farmacológico , Humanos , Papio , Tempo de Tromboplastina Parcial
20.
Blood Adv ; 3(4): 658-669, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808684

RESUMO

Staphylococcus aureus infections can produce systemic bacteremia and inflammation in humans, which may progress to severe sepsis or septic shock, even with appropriate antibiotic treatment. Sepsis may be associated with disseminated intravascular coagulation and consumptive coagulopathy. In some types of mouse infection models, the plasma coagulation protein factor XI (FXI) contributes to the pathogenesis of sepsis. We hypothesize that FXI also contributes to the pathogenesis of sepsis in primates, and that pharmacological interference with FXI will alter the outcome of Staphylococcus aureus-induced lethality in a baboon model. Pretreatment of baboons with the anti-FXI antibody 3G3, a humanized variant of the murine monoclonal 14E11 that blocks FXI activation by FXIIa, substantially reduced the activation of coagulation, as reflected by clotting times and plasma complexes of coagulation proteases (FXIIa, FXIa, FIXa, FXa, FVIIa, and thrombin) with serpins (antithrombin or C1 inhibitor) following infusion of heat-inactivated S aureus 3G3 treatment reduced fibrinogen and platelet consumption, fibrin deposition in tissues, neutrophil activation and accumulation in tissues, cytokine production, kininogen cleavage, cell death, and complement activation. Overall, 3G3 infusion protected the structure and function of multiple vital organs, including lung, heart, liver, and kidney. All treated animals reached the end point survival (7 days), whereas all nontreated animals developed terminal organ failure within 28 hours. We conclude that FXI plays a role in the pathogenesis of S aureus-induced disseminated intravascular coagulation and lethality in baboons. The results provide proof of concept for future therapeutic interventions that may prevent sepsis-induced organ failure and save lives in certain forms of sepsis.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fator XI/imunologia , Sepse/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Coagulação Sanguínea/efeitos dos fármacos , Fator XI/antagonistas & inibidores , Fator XIIa/imunologia , Humanos , Papio ursinus , Sepse/sangue , Sepse/terapia , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA