Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Drug Test Anal ; 13(5): 1001-1007, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629815

RESUMO

The emergence of novel doping agents is a continuous issue for analysts who aim to maintain the integrity of horseracing together with the well-being and safety of the animals and riders involved. Untargeted mass spectrometric analysis presents a potential improvement for antidoping as it enables the detection of compounds being indirectly affected by an administered drug. In this study, liquid chromatography-high-resolution mass spectrometry was used to investigate a 12-horse administration study of the synthetic opioid, butorphanol. A mass spectrometric workflow capable of detecting metabolic differences for an extended period of time was successfully developed. This proof-of-concept study demonstrates the potential of untargeted workflows to provide a list of biomarkers of exposure and effect that are indicative of drug administration which may be implemented into routine testing for improved doping control.


Assuntos
Analgésicos Opioides/sangue , Butorfanol/sangue , Cromatografia Líquida de Alta Pressão/veterinária , Dopagem Esportivo , Cavalos/sangue , Espectrometria de Massas/veterinária , Detecção do Abuso de Substâncias/veterinária , Animais , Mineração de Dados , Masculino , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Fluxo de Trabalho
2.
Anal Bioanal Chem ; 411(16): 3507-3520, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31073731

RESUMO

A quantitative method for the determination of per- and polyfluoroalkyl substances (PFAS) using liquid chromatography (LC) tandem mass spectrometry (MS/MS) was developed and applied to aqueous wastewater, surface water, and drinking water samples. Fifty-three PFAS from 14 compound classes (including many contaminants of emerging concern) were measured using a single analytical method. After solid-phase extraction using weak anion exchange cartridges, method detection limits in water ranged from 0.28 to 18 ng/L and method quantitation limits ranged from 0.35 to 26 ng/L. Method accuracy ranged from 70 to 127% for 49 of the 53 extracted PFAS, with the remaining four between 66 and 138%. Method precision ranged from 2 to 28% RSD, with 49 out of the 53 PFAS being below < 20%. In addition to quantifying > 50 PFAS, many of which are currently unregulated in the environment and not included in typical analytical lists, this method has efficiency advantages over other similar methods as it utilizes a single chromatographic separation with a shorter runtime (14 min), while maintaining method accuracy and stability and the separation of branched and linear PFAS isomers. The method was applied to wastewater influent and effluent; surface water from a river, wetland, and lake; and drinking water samples to survey PFAS contamination in Australian aqueous matrices. The compound classes FTCAs, FOSAAs, PFPAs, and diPAPs were detected for the first time in Australian WWTPs and the method was used to quantify PFAS concentrations from 0.60 to 193 ng/L. The range of compound classes detected and different PFAS signatures between sample locations demonstrate the need for expanded quantitation lists when investigating PFAS, especially newer classes in aqueous environmental samples. Graphical abstract.

3.
Metabolomics ; 13(2): 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28090199

RESUMO

BACKGROUND: An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. RESULTS: Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. CONCLUSION: MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.

4.
Methods Mol Biol ; 1201: 281-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388122

RESUMO

This protocol describes the combined use of metabolite profiling and stable isotope labelling to define pathways of central carbon metabolism in the protozoa parasite, Leishmania mexicana. Parasite stages are cultivated in standard or completely defined media and then rapidly transferred to chemically equivalent media containing a single (13)C-labelled nutrient. The incorporation of label can be followed over time or after establishment of isotopic equilibrium by harvesting parasites with rapid metabolic quenching. (13)C enrichment of multiple intracellular polar and apolar (lipidic) metabolites can be quantified using gas chromatography-mass spectrometry (GC-MS), while the uptake and secretion of (13)C-labelled metabolites can be measured by (13)C-NMR. Analysis of the mass isotopomer distribution of key metabolites provides information on pathway structure, while analysis of labelling kinetics can be used to infer metabolic fluxes. This protocol is exemplified using L. mexicana labelled with (13)C-U-glucose. The method can be used to measure perturbations in parasite metabolism induced by drug inhibition or genetic manipulation of enzyme levels and is broadly applicable to any cultured parasite stages.


Assuntos
Isótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Leishmania/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Análise do Fluxo Metabólico/métodos , Isótopos de Carbono/metabolismo , Leishmania mexicana/metabolismo
5.
PLoS Pathog ; 10(3): e1003955, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24603978

RESUMO

Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6∶1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono-culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up-regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P. gingivalis was stimulated by T. denticola conditioned medium and glycine supplementation of T. denticola medium increased final cell density 1.7-fold. Collectively these data show P. gingivalis and T. denticola respond metabolically to the presence of each other with T. denticola displaying responses that help explain enhanced virulence of co-infections.


Assuntos
Porphyromonas gingivalis/metabolismo , Simbiose/fisiologia , Treponema denticola/metabolismo , Técnicas de Cocultura , Coinfecção , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Treponema denticola/genética , Treponema denticola/crescimento & desenvolvimento
6.
Anal Chem ; 84(24): 10768-76, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23150939

RESUMO

Metabolomics research often requires the use of multiple analytical platforms, batches of samples, and laboratories, any of which can introduce a component of unwanted variation. In addition, every experiment is subject to within-platform and other experimental variation, which often includes unwanted biological variation. Such variation must be removed in order to focus on the biological information of interest. We present a broadly applicable method for the removal of unwanted variation arising from various sources for the identification of differentially abundant metabolites and, hence, for the systematic integration of data on the same quantities from different sources. We illustrate the versatility and the performance of the approach in four applications, and we show that it has several advantages over the existing normalization methods.


Assuntos
Bases de Dados Factuais , Metabolômica/métodos , Integração de Sistemas , Bases de Dados Factuais/estatística & dados numéricos
7.
J Proteome Res ; 11(9): 4449-64, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22808953

RESUMO

Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia exist in a polymicrobial biofilm associated with chronic periodontitis. The aim of this study was to culture these three species as a polymicrobial biofilm and to determine proteins important for bacterial interactions. In a flow cell all three species attached and grew as a biofilm; however, after 90 h of culture P. gingivalis and T. denticola were closely associated and dominated the polymicrobial biofilm. For comparison, planktonic cultures of P. gingivalis and T. denticola were grown separately in continuous culture. Whole cell lysates were subjected to SDS-PAGE, followed by in-gel proteolytic H2¹6O/H2¹8O labeling. From two replicates, 135 and 174 P. gingivalis proteins and 134 and 194 T. denticola proteins were quantified by LC-MALDI TOF/TOF MS. The results suggest a change of strategy in iron acquisition by P. gingivalis due to large increases in the abundance of HusA and HusB in the polymicrobial biofilm while HmuY and other iron/haem transport systems decreased. Significant changes in the abundance of peptidases and enzymes involved in glutamate and glycine catabolism suggest syntrophy. These data indicate an intimate association between P. gingivalis and T. denticola in a biofilm that may play a role in disease pathogenesis.


Assuntos
Proteínas de Bactérias/análise , Biofilmes , Consórcios Microbianos , Proteoma/análise , Proteômica/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Bacteroidetes/química , Bacteroidetes/fisiologia , Cromatografia Líquida , Porphyromonas gingivalis/química , Porphyromonas gingivalis/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treponema denticola/química , Treponema denticola/fisiologia
8.
J Mol Biol ; 399(3): 358-66, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20417639

RESUMO

GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 A resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional (1)H,(15)N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.


Assuntos
DDT/química , Drosophila melanogaster/enzimologia , Glutationa Transferase/metabolismo , Inseticidas/química , Animais , Sítios de Ligação , Cristalografia por Raios X , DDT/metabolismo , Inativação Metabólica , Inseticidas/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica
9.
J Biol Chem ; 283(11): 6773-82, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18178556

RESUMO

The cell walls of the Corynebacterineae, which includes the important human pathogen Mycobacterium tuberculosis, contain two major lipopolysaccharides, lipoarabinomannan (LAM) and lipomannan (LM). LAM is assembled on a subpool of phosphatidylinositol mannosides (PIMs), whereas the identity of the LM lipid anchor is less well characterized. In this study we have identified a new gene (Rv2188c in M. tuberculosis and NCgl2106 in Corynebacterium glutamicum) that encodes a mannosyltransferase involved in the synthesis of the early dimannosylated PIM species, acyl-PIM2, and LAM. Disruption of the C. glutamicum NCgl2106 gene resulted in loss of synthesis of AcPIM2 and accumulation of the monomannosylated precursor, AcPIM1. The synthesis of a structurally unrelated mannolipid, Gl-X, was unaffected. The synthesis of AcPIM2 in C. glutamicum DeltaNCgl2106 was restored by complementation with M. tuberculosis Rv2188c. In vivo labeling of the mutant with [3H]Man and in vitro labeling of membranes with GDP-[3H]Man confirmed that NCgl2106/Rv2188c catalyzed the second mannose addition in PIM biosynthesis, a function previously ascribed to PimB/Rv0557. The C. glutamicum Delta NCgl2106 mutant lacked mature LAM but unexpectedly still synthesized the major pool of LM. Biochemical analyses of the LM core indicated that this lipopolysaccharide was assembled on Gl-X. These data suggest that NCgl2106/Rv2188c and the previously studied PimB/Rv0557 transfer mannose residues to distinct mannoglycolipids that act as precursors for LAM and LM, respectively.


Assuntos
Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos/química , Manosiltransferases/metabolismo , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositóis/química , Sequência de Aminoácidos , Parede Celular/metabolismo , Teste de Complementação Genética , Glicosiltransferases/metabolismo , Modelos Biológicos , Modelos Químicos , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
10.
J Biol Chem ; 282(15): 11000-8, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17308303

RESUMO

Mycolic acids are essential components of the cell walls of bacteria belonging to the suborder Corynebacterineae, including the important human pathogens Mycobacterium tuberculosis and Mycobacterium leprae. Mycolic acid biosynthesis is complex and the target of several frontline antimycobacterial drugs. The condensation of two fatty acids to form a 2-alkyl-3-keto mycolate precursor and the subsequent reduction of this precursor represent two key and highly conserved steps in this pathway. Although the enzyme catalyzing the condensation step has recently been identified, little is known about the putative reductase. Using an extensive bioinformatic comparison of the genomes of M. tuberculosis and Corynebacterium glutamicum, we identified NCgl2385, the orthologue of Rv2509 in M. tuberculosis, as a potential reductase candidate. Deletion of the gene in C. glutamicum resulted in a slow growing strain that was deficient in arabinogalactan-linked mycolates and synthesized abnormal forms of the mycolate-containing glycolipids trehalose dicorynomycolate and trehalose monocorynomycolate. Analysis of the native and acetylated trehalose glycolipids by MALDI-TOF mass spectrometry indicated that these novel glycolipids contained an unreduced beta-keto ester. This was confirmed by analysis of sodium borodeuteride-reduced mycolic acids by gas chromatography mass spectrometry. Reintroduction of the NCgl2385 gene into the mutant restored the transfer of mature mycolic acids to both the trehalose glycolipids and cell wall arabinogalactan. These data indicate that NCgl2385, which we have designated CmrA, is essential for the production of mature trehalose mycolates and subsequent covalent attachment of mycolic acids onto the cell wall, thus representing a focus for future structural and pathogenicity studies.


Assuntos
Galactanos/metabolismo , Ácidos Micólicos/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Parede Celular/metabolismo , Sequência Conservada , Corynebacterium/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Viabilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Oxirredutases/genética , Fenótipo , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA