Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 23(3): 987-1012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416219

RESUMO

Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.


Assuntos
Osso e Ossos , Aprendizado de Máquina , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Osso e Ossos/fisiologia , Probabilidade , Estresse Mecânico , Humanos , Simulação por Computador , Poliésteres
2.
Polymers (Basel) ; 15(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177317

RESUMO

This article presents the development and implementation of the Delamination Plug-in, an open-source tool for modeling delamination tests in the ABAQUS software. Specifically designed for stochastic modeling of 3D printed composites, the plug-in combines the benefits of the graphical user interface (GUI) and the programming of commercial finite element (FE) software. The Delamination Plug-in offers an effortless alternative to the time-consuming analytical modeling and GUI work involved in delamination tests and includes algorithms for several tests, such as the double cantilever beam, end-loaded split, end-notched flexure, and modified end-loaded split tests, solved using the virtual crack closure technique and the cohesive zone method. It enables the user to develop simulations for both simple symmetric laminates and generally layered laminates with additional thermal stresses. The applicability of the tool is demonstrated through its use in two distinct delamination problems, one for conventional and one for 3D printed composite laminates, and its results are compared to analytical models and experimental data from the open literature. The results demonstrate that the Delamination Plug-in is efficient and applicable for such materials. This establishes the tool as an important means of automating delamination analysis and for the development and testing of 3D printed composites, making it a valuable tool for both researchers and industry professionals.

3.
Macromol Rapid Commun ; 44(8): e2200955, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36755500

RESUMO

Acrylate-endcapped urethane-based precursors constituting a poly(D,L-lactide)/poly(ε-caprolactone) (PDLLA/PCL) random copolymer backbone are synthesized with linear and star-shaped architectures and various molar masses. It is shown that the glass transition and thus the actuation temperature could be tuned by varying the monomer content (0-8 wt% ε-caprolactone, Tg,crosslinked = 10-42 °C) in the polymers. The resulting polymers are analyzed for their physico-chemical properties and viscoelastic behavior (G'max = 9.6-750 kPa). The obtained polymers are subsequently crosslinked and their shape-memory properties are found to be excellent (Rr = 88-100%, Rf = 78-99.5%). Moreover, their potential toward processing via various additive manufacturing techniques (digital light processing, two-photon polymerization and direct powder extrusion) is evidenced with retention of their shape-memory effect. Additionally, all polymers are found to be biocompatible in direct contact in vitro cell assays using primary human foreskin fibroblasts (HFFs) through MTS assay (up to ≈100% metabolic activity relative to TCP) and live/dead staining (>70% viability).


Assuntos
Poliésteres , Engenharia Tecidual , Humanos , Poliésteres/química , Polímeros/química , Uretana , Fibroblastos , Materiais Biocompatíveis/química
4.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837074

RESUMO

This article presents a novel approach for assessing the effects of residual stresses in laser-directed energy deposition (L-DED). The approach focuses on exploiting the potential of rapidly growing tools such as machine learning and polynomial chaos expansion for handling full-field data for measurements and predictions. In particular, the thermal expansion coefficient of thin-wall L-DED steel specimens is measured and then used to predict the displacement fields around the drilling hole in incremental hole-drilling tests. The incremental hole-drilling test is performed on cubic L-DED steel specimens and the displacement fields are visualized using a 3D micro-digital image correlation setup. A good agreement is achieved between predictions and experimental measurements.

5.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947092

RESUMO

The inherent anisotropy of composites complicates their damage response. The influence of multiaxiality, particularly in carbon-based composites, is not thoroughly understood due to obstacles related to damage monitoring during loading. In this study, the response of different carbon/epoxy laminates under fatigue is examined through dedicated in situ microscopic observations. By varying the orientation of off-axis layers, the impact of multiaxiality on the mechanical and damage response is evaluated. Furthermore, balanced and unbalanced laminates are compared, considering the limited information for the latter. The influence of the number of off-axis layers is finally assessed leading to important conclusions about optimal fatigue response. The fatigue response is evaluated in all cases considering both the mechanical properties and the damage characteristics. Significant conclusions are drawn, especially for the benefits of unbalanced laminates and the impact of shear stresses, allowing for the utilization of the obtained data as important input for the establishment of reliable fatigue damage models.

6.
Ultrasonics ; 58: 111-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25620710

RESUMO

Conventionally, the ultrasonic polar scan (UPS) records the amplitude or time-of-flight in transmission using short ultrasonic pulses for a wide range of incidence angles, resulting in a fingerprint of the critical bulk wave angles of the material at the insonified spot. Here, we investigate the use of quasi-harmonic ultrasound (bursts) in a polar scan experiment, both experimentally and numerically. It is shown that the nature of the fingerprint drastically changes, and reveals the positions of the leaky Lamb angles. To compare with experiments, both plane wave and bounded beam simulations have been performed based on the recursive stiffness matrix method. Whereas the plane wave computations yield a pure Lamb wave angle fingerprint, this is no longer valid for the more realistic case of a bounded beam. The experimental recordings are fully supported by the bounded beam simulations. To complement the traditional amplitude measurement, experimental and numerical investigations have been performed to record, predict and analyze the phase of the transmitted ultrasonic beam. This results in the conceptual introduction of the 'phase polar scan', exposing even more intriguing and detailed patterns. In fact, the combination of the amplitude and the phase polar scan provides the complete knowledge about the complex transmission coefficient for every possible angle of incidence. This comprehensive information will be very valuable for inverse modeling of the local elasticity tensor based on a single UPS experiment. Finally, the UPS method has been applied for the detection of an artificial delamination. Compared to the pulsed UPS, the quasi-harmonic UPS (both the amplitude and phase recording) shows a superior sensitivity to the presence of a delamination.

7.
Ultrasonics ; 54(6): 1509-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796247

RESUMO

The ultrasonic polar scan (UPS), either in transmission, reflection or backscatter mode, is a promising non-destructive testing technique for the characterization of composites, providing information about the mechanical anisotropy, the viscoelastic damping, the surface roughness, and more. At present, the technique is merely being used for qualitative purposes. The limited quantitative exploration and use of the technique can be primarily ascribed to limitations of current theoretical models as well as the difficulty to perform accurate, and more importantly, reproducible UPS experiments. Over the last years, we have identified several potential pitfalls in the experimental implementation of the technique which severely deteriorate the accurateness and reproducibility of a UPS. In this paper, we make an inventory of the most important difficulties, illustrate each of them by a real experiment and present a feasible mediation, either numerical or experimental in nature. Once the experimental set-up is fine-tuned to overcome these pitfalls, it is expected that the recording of high-level UPS experiments, in combination with numerical computations, will facilitate the technique to become a fully quantitative non-destructive characterization method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA