Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
Front Oncol ; 13: 1158345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251949

RESUMO

Introduction: Most predictive biomarkers approved for clinical use measure single analytes such as genetic alteration or protein overexpression. We developed and validated a novel biomarker with the aim of achieving broad clinical utility. The Xerna™ TME Panel is a pan-tumor, RNA expression-based classifier, designed to predict response to multiple tumor microenvironment (TME)-targeted therapies, including immunotherapies and anti-angiogenic agents. Methods: The Panel algorithm is an artificial neural network (ANN) trained with an input signature of 124 genes that was optimized across various solid tumors. From the 298-patient training data, the model learned to discriminate four TME subtypes: Angiogenic (A), Immune Active (IA), Immune Desert (ID), and Immune Suppressed (IS). The final classifier was evaluated in four independent clinical cohorts to test whether TME subtype could predict response to anti-angiogenic agents and immunotherapies across gastric, ovarian, and melanoma datasets. Results: The TME subtypes represent stromal phenotypes defined by angiogenesis and immune biological axes. The model yields clear boundaries between biomarker-positive and -negative and showed 1.6-to-7-fold enrichment of clinical benefit for multiple therapeutic hypotheses. The Panel performed better across all criteria compared to a null model for gastric and ovarian anti-angiogenic datasets. It also outperformed PD-L1 combined positive score (>1) in accuracy, specificity, and positive predictive value (PPV), and microsatellite-instability high (MSI-H) in sensitivity and negative predictive value (NPV) for the gastric immunotherapy cohort. Discussion: The TME Panel's strong performance on diverse datasets suggests it may be amenable for use as a clinical diagnostic for varied cancer types and therapeutic modalities.

3.
PLoS One ; 17(7): e0268244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35849586

RESUMO

Prolonged activation of vascular endothelial growth factor receptor-2 (VEGFR-2) due to mis-regulation of the VEGF pathway induces aberrant blood vessel expansion, which supports growth and survival of solid tumors. Therapeutic interventions that inhibit the VEGFR-2 pathway have therefore become a mainstay of cancer treatment. Non-clinical studies have recently revealed that blockade of angiogenesis can modulate the tumor microenvironment and enhance the efficacy of concurrent immune therapies. Ramucirumab is an FDA-approved anti-angiogenic antibody that inhibits VEGFR-2 and is currently being evaluated in clinical studies in combination with anti-programmed cell death (PD-1) axis checkpoint inhibitors (pembrolizumab, durvalumab, or sintilimab) across several cancer types. The purpose of this study is to establish a mechanistic basis for the enhanced activity observed in the combined blockade of VEGFR-2 and PD-1-axis pathways. Pre-clinical studies were conducted in murine tumor models known to be responsive to anti-PD-1 axis therapy, using monoclonal antibodies that block mouse VEGFR-2 and programmed death-ligand 1 (PD-L1). Combination therapy resulted in enhanced anti-tumor activity compared to anti-PD-L1 monotherapy. VEGFR-2 blockade at early timepoints post-anti-PD-L1 therapy resulted in a dose-dependent and transient enhanced infiltration of T cells, and establishment of immunological memory. VEGFR-2 blockade at later timepoints resulted in enhancement of anti-PD-L1-driven immune cell infiltration. VEGFR-2 and PD-L1 monotherapies induced both unique and overlapping patterns of immune gene expression, and combination therapy resulted in an enhanced immune activation signature. Collectively, these results provide new and actionable insights into the mechanisms by which concurrent VEGFR-2 and PD-L1 antibody therapy leads to enhanced anti-tumor efficacy.


Assuntos
Neoplasias , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Camundongos , Neoplasias/terapia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
4.
Oncotarget ; 10(53): 5523-5533, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31565186

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) is an attractive therapeutic target in solid malignancies due to its central role in tumor angiogenesis. Ramucirumab (Cyramza®, LY3009806) is a human monoclonal antibody specific for VEGFR2 approved for several adult indications and currently in a phase 1 clinical trial for pediatric patients with solid tumors (NCT02564198). Here, we evaluated ramucirumab in vitro and the anti-murine VEGFR2 antibody DC101 in vivo with or without chemotherapy across a range of pediatric cancer models. Ramucirumab abrogated in vitro endothelial cord formation driven by cancer cell lines representing multiple pediatric histologies; this response was independent of the origin of the tumor cell-line. Several pediatric cancer mouse models responded to single agent DC101-mediated VEGFR2 inhibition with tumor growth delay. Preclinical stable disease and partial xenograft regressions were observed in mouse models of Ewing's sarcoma, synovial sarcoma, neuroblastoma, and desmoplastic small round cell tumor treated with DC101 and cytotoxic chemotherapy. In contrast, DC101 treatment in osteosarcoma models had limited efficacy alone or in combination with chemotherapeutics. Our data indicate differential efficacy of targeting the VEGFR2 pathway in pediatric models and support the continued evaluation of VEGFR2 inhibition in combination with cytotoxic chemotherapy in multiple pediatric indications.

5.
Elife ; 72018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29620526

RESUMO

Patients with Gorham-Stout disease (GSD) have lymphatic vessels in their bones and their bones gradually disappear. Here, we report that mice that overexpress VEGF-C in bone exhibit a phenotype that resembles GSD. To drive VEGF-C expression in bone, we generated Osx-tTA;TetO-Vegfc double-transgenic mice. In contrast to Osx-tTA mice, Osx-tTA;TetO-Vegfc mice developed lymphatics in their bones. We found that inhibition of VEGFR3, but not VEGFR2, prevented the formation of bone lymphatics in Osx-tTA;TetO-Vegfc mice. Radiological and histological analysis revealed that bones from Osx-tTA;TetO-Vegfc mice were more porous and had more osteoclasts than bones from Osx-tTA mice. Importantly, we found that bone loss in Osx-tTA;TetO-Vegfc mice could be attenuated by an osteoclast inhibitor. We also discovered that the mutant phenotype of Osx-tTA;TetO-Vegfc mice could be reversed by inhibiting the expression of VEGF-C. Taken together, our results indicate that expression of VEGF-C in bone is sufficient to induce the pathologic hallmarks of GSD in mice.


Assuntos
Reabsorção Óssea/patologia , Osso e Ossos/patologia , Endotélio Linfático/patologia , Vasos Linfáticos/patologia , Osteoclastos/patologia , Fator C de Crescimento do Endotélio Vascular/fisiologia , Animais , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Células Cultivadas , Endotélio Linfático/metabolismo , Humanos , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Transgênicos , Osteoclastos/metabolismo , Fenótipo , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Gene Rep ; 11: 94-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30873504

RESUMO

Osteoarthritis (OA) is a painful and debilitating disease. A striking feature of OA is the dramatic increase in vascular endothelial growth factor (VEGF) levels and in new blood vessel formation in the joints, both of which correlate with the severity of OA pain. Our aim was to determine whether anti-VEGF monoclonal antibodies (mAbs) - MF-1 (mAb to VEGFR1) and DC101 (mAb to VEGFR2) - can reduce OA pain and can do so by targeting VEGF signaling pathways such as Flt-1 (VEGFR1) and Flk-1 (VEGFR2). After IACUC approval, OA was induced by partial medial meniscectomy (PMM) in C57/BL6 mice (20 g). ln the first experiment, for validation of VEGFR1 in DRG, the mouse dorsal root ganglion (DRG) was stimulated with NGF for 48 hours to find the relative gene induction for VEGFR1 vs. 18S by RT-PCR. In the second experiment, Biotin-conjugated VEGFA (1 µg/knee joint) was administered in the left knee joint of mice with advanced OA in order to characterization of VEGFR1 and VEGFR2. pVEGFR1/VEGFR2 was detected by immunostaining in DRGs. Finally, MF-1 and DC101 were administered in OA mice by both intrathecal (IT) and intraarticular (IA) injections, and the change in paw withdrawal threshold (PWT) was measured. Retrograde transport of VEGF was confirmed for detection of pVEGFR1/VEGFR2 in the DRG. PMM surgery led to development of OA and mechanical allodynia, with reduced paw withdrawal thresholds (PWT) (P<0.0001). IT injection of MF-1 led to a reduction of allodynia in advanced OA, but injection of DC101 did not. IA injection of MF-1 or DC101 at one week after PMM injury did not reduce allodynia, but when injected in advanced OA mice joints at 12 weeks, both Mabs increased PWT an indicator of analgesia. Our data show that MF-1 (VEGR1 inhibition) decreases pain in advanced OA after IT or IA injection. Activation of MF-1 or DC101 may ameliorate OA-related joint pain.

7.
Cancer Chemother Pharmacol ; 78(4): 815-24, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27566701

RESUMO

PURPOSE: Metastasis of solid tumors to regional lymph nodes is facilitated by tumor lymphangiogenesis, which is primarily mediated by the vascular endothelial growth factor receptor 3 (VEGFR-3). We conducted a phase 1 dose-escalation (part A) study of the VEGFR-3 human immunoglobulin G subclass 1 monoclonal antibody LY3022856 in advanced solid tumors, followed by a colorectal cancer (CRC) expansion (part B). METHODS: Part A evaluated the safety profile and maximum tolerated dose (MTD) of LY3022856 in patients treated intravenously at doses of 5-30 mg/kg weekly (qwk). Part B further evaluated tolerability in CRC patients treated with 30 mg/kg. Secondary objectives were pharmacokinetics, anti-tumor activity, and pharmacodynamics (exploratory). RESULTS: A total of 44 patients (23 in part A; 21 in part B) were treated; only one dose-limiting toxicity was observed at the lowest dose level. The MTD was not reached. Treatment-emergent adverse events (TEAEs) of any grade included in ≥15 % of all patients were: nausea (41 %), fatigue (32 %), vomiting (30 %), decreased appetite (27 %), pyrexia (25 %), peripheral edema (23 %), and urinary tract infection (UTI, 20 %). The most common grade 3/4 TEAEs included UTI and small intestinal obstruction (7 % each). No radiographic responses were noted. Median progression-free survival in part B was 6.3 weeks (95 % confidence interval: 5.1, 14.4), and a best overall response of stable disease was observed in 4 CRC patients (19.0 %). CONCLUSIONS: LY3022856 was well tolerated up to a dose of 30 mg/kg qwk, but with minimal anti-tumor activity in CRC. CLINICALTRIALS. GOV IDENTIFIER: NCT01288989.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias/tratamento farmacológico , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto , Idoso , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Estudos de Coortes , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Resultado do Tratamento , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia
8.
Pharmacol Ther ; 164: 204-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288725

RESUMO

Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/fisiopatologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Resistencia a Medicamentos Antineoplásicos/fisiologia , Quimioterapia Combinada , Humanos , Ramucirumab
9.
Cancer Res ; 76(9): 2573-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197264

RESUMO

Treatment of metastatic gastric cancer typically involves chemotherapy and monoclonal antibodies targeting HER2 (ERBB2) and VEGFR2 (KDR). However, reliable methods to identify patients who would benefit most from a combination of treatment modalities targeting the tumor stroma, including new immunotherapy approaches, are still lacking. Therefore, we integrated a mouse model of stromal activation and gastric cancer genomic information to identify gene expression signatures that may inform treatment strategies. We generated a mouse model in which VEGF-A is expressed via adenovirus, enabling a stromal response marked by immune infiltration and angiogenesis at the injection site, and identified distinct stromal gene expression signatures. With these data, we designed multiplexed IHC assays that were applied to human primary gastric tumors and classified each tumor to a dominant stromal phenotype representative of the vascular and immune diversity found in gastric cancer. We also refined the stromal gene signatures and explored their relation to the dominant patient phenotypes identified by recent large-scale studies of gastric cancer genomics (The Cancer Genome Atlas and Asian Cancer Research Group), revealing four distinct stromal phenotypes. Collectively, these findings suggest that a genomics-based systems approach focused on the tumor stroma can be used to discover putative predictive biomarkers of treatment response, especially to antiangiogenesis agents and immunotherapy, thus offering an opportunity to improve patient stratification. Cancer Res; 76(9); 2573-86. ©2016 AACR.


Assuntos
Neoplasias Gástricas/classificação , Neoplasias Gástricas/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Xenoenxertos , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Neovascularização Patológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise Serial de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Clin Exp Metastasis ; 31(3): 351-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379135

RESUMO

For many types of human cancer, the expression of vascular endothelial growth factor-C (VEGF-C) correlates with enhanced tumor-associated lymphatic vessel density, metastasis formation and poor prognosis. In experimental animals, VEGF-C produced by primary tumors can induce lymphangiogenesis within and/or at the periphery of the tumor, and promotes metastasis formation. Tumor-induced lymphangiogenesis is therefore thought to expedite entry of tumor cells into the lymphatic vasculature and their trafficking to regional lymph nodes, thereby fostering metastatic dissemination. Tumour-produced VEGF-C can also drain to the regional lymph nodes and induce lymphangiogenesis there. Whether this activity promotes metastasis formation remains unclear. To address this issue we manipulated VEGF-C activity and VEGFR-3 activation in the lymph nodes draining syngeneic rat breast cancers using intra-dermal delivery of either recombinant VEGF-C or VEGFR-3 blocking antibodies to induce or suppress lymph node lymphangiogenesis, respectively. Recombinant VEGF-C induced lymph node lymphangiogenesis, but was not sufficient to promote metastasis formation by poorly metastatic NM-081 breast tumours. Conversely, inhibition of lymph node lymphangiogeneis induced by highly metastatic MT-450 breast tumours suppressed the outgrowth of lymph node metastases, but not the initial colonization of the lymph nodes. Lung metastasis was also not affected. We conclude that tumor-derived VEGF-C draining to regional lymph nodes promotes the outgrowth of lymph node metastases. VEGF-C may induce lung metastasis independently of its effects on lymph node metastasis.


Assuntos
Neoplasias da Mama/genética , Metástase Linfática/genética , Neoplasias Mamárias Animais/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Linfonodos/patologia , Metástase Linfática/patologia , Neoplasias Mamárias Animais/patologia , Ratos , Ativação Transcricional/genética , Fator C de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
11.
Circ Res ; 114(5): 806-22, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24429550

RESUMO

RATIONALE: Lymphatic vessels in the respiratory tract normally mature into a functional network during the neonatal period, but under some pathological conditions they can grow as enlarged, dilated sacs that result in the potentially lethal condition of pulmonary lymphangiectasia. OBJECTIVE: We sought to determine whether overexpression of the lymphangiogenic growth factor (vascular endothelial growth factor-C [VEGF-C]) can promote lymphatic growth and maturation in the respiratory tract. Unexpectedly, perinatal overexpression of VEGF-C in the respiratory epithelium led to a condition resembling human pulmonary lymphangiectasia, a life-threatening disorder of the newborn characterized by respiratory distress and the presence of widely dilated lymphatics. METHODS AND RESULTS: Administration of doxycycline to Clara cell secretory protein-reverse tetracycline-controlled transactivator/tetracycline operator-VEGF-C double-transgenic mice during a critical period from embryonic day 15.5 to postnatal day 14 was accompanied by respiratory distress, chylothorax, pulmonary lymphangiectasia, and high mortality. Enlarged sac-like lymphatics were abundant near major airways, pulmonary vessels, and visceral pleura. Side-by-side comparison revealed morphological features similar to pulmonary lymphangiectasia in humans. The condition was milder in mice given doxycycline after age postnatal day 14 and did not develop after postnatal day 35. Mechanistic studies revealed that VEGF recptor (VEGFR)-3 alone drove lymphatic growth in adult mice, but both VEGFR-2 and VEGFR-3 were required for the development of lymphangiectasia in neonates. VEGFR-2/VEGFR-3 heterodimers were more abundant in the dilated lymphatics, consistent with the involvement of both receptors. Despite the dependence of lymphangiectasia on VEGFR-2 and VEGFR-3, the condition was not reversed by blocking both receptors together or by withdrawing VEGF-C. CONCLUSIONS: The findings indicate that VEGF-C overexpression can induce pulmonary lymphangiectasia during a critical period in perinatal development.


Assuntos
Pneumopatias/congênito , Linfangiectasia/congênito , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Feminino , Humanos , Lactente , Pneumopatias/genética , Pneumopatias/metabolismo , Pneumopatias/patologia , Linfangiectasia/genética , Linfangiectasia/metabolismo , Linfangiectasia/patologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Gravidez , Edema Pulmonar/genética , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Transdução de Sinais/fisiologia , Traqueia/metabolismo , Traqueia/patologia , Uteroglobina/genética , Uteroglobina/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Nature ; 484(7392): 110-4, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426001

RESUMO

Developing tissues and growing tumours produce vascular endothelial growth factors (VEGFs), leading to the activation of the corresponding receptors in endothelial cells. The resultant angiogenic expansion of the local vasculature can promote physiological and pathological growth processes. Previous work has uncovered that the VEGF and Notch pathways are tightly linked. Signalling triggered by VEGF-A (also known as VEGF) has been shown to induce expression of the Notch ligand DLL4 in angiogenic vessels and, most prominently, in the tip of endothelial sprouts. DLL4 activates Notch in adjacent cells, which suppresses the expression of VEGF receptors and thereby restrains endothelial sprouting and proliferation. Here we show, by using inducible loss-of-function genetics in combination with inhibitors in vivo, that DLL4 protein expression in retinal tip cells is only weakly modulated by VEGFR2 signalling. Surprisingly, Notch inhibition also had no significant impact on VEGFR2 expression and induced deregulated endothelial sprouting and proliferation even in the absence of VEGFR2, which is the most important VEGF-A receptor and is considered to be indispensable for these processes. By contrast, VEGFR3, the main receptor for VEGF-C, was strongly modulated by Notch. VEGFR3 kinase-activity inhibitors but not ligand-blocking antibodies suppressed the sprouting of endothelial cells that had low Notch signalling activity. Our results establish that VEGFR2 and VEGFR3 are regulated in a highly differential manner by Notch. We propose that successful anti-angiogenic targeting of these receptors and their ligands will strongly depend on the status of endothelial Notch signalling.


Assuntos
Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Genes Dev ; 25(8): 831-44, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498572

RESUMO

Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.


Assuntos
Neurogênese/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Linfangiogênese/genética , Linfangiogênese/fisiologia , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
15.
J Exp Med ; 207(10): 2255-69, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20837699

RESUMO

The role of lymphangiogenesis in inflammation has remained unclear. To investigate the role of lymphatic versus blood vasculature in chronic skin inflammation, we inhibited vascular endothelial growth factor (VEGF) receptor (VEGFR) signaling by function-blocking antibodies in the established keratin 14 (K14)-VEGF-A transgenic (Tg) mouse model of chronic cutaneous inflammation. Although treatment with an anti-VEGFR-2 antibody inhibited skin inflammation, epidermal hyperplasia, inflammatory infiltration, and angiogenesis, systemic inhibition of VEGFR-3, surprisingly, increased inflammatory edema formation and inflammatory cell accumulation despite inhibition of lymphangiogenesis. Importantly, chronic Tg delivery of the lymphangiogenic factor VEGF-C to the skin of K14-VEGF-A mice completely inhibited development of chronic skin inflammation, epidermal hyperplasia and abnormal differentiation, and accumulation of CD8 T cells. Similar results were found after Tg delivery of mouse VEGF-D that only activates VEGFR-3 but not VEGFR-2. Moreover, intracutaneous injection of recombinant VEGF-C156S, which only activates VEGFR-3, significantly reduced inflammation. Although lymphatic drainage was inhibited in chronic skin inflammation, it was enhanced by Tg VEGF-C delivery. Together, these results reveal an unanticipated active role of lymphatic vessels in controlling chronic inflammation. Stimulation of functional lymphangiogenesis via VEGFR-3, in addition to antiangiogenic therapy, might therefore serve as a novel strategy to treat chronic inflammatory disorders of the skin and possibly also other organs.


Assuntos
Dermatite/metabolismo , Linfangiogênese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Bloqueadores/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Crônica , Dermatite/genética , Dermatite/imunologia , Dermatite/terapia , Queratina-14/genética , Camundongos , Camundongos Transgênicos , Pele/irrigação sanguínea , Pele/imunologia , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator D de Crescimento do Endotélio Vascular/administração & dosagem , Fator D de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Circulation ; 121(12): 1413-22, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231530

RESUMO

BACKGROUND: Lymphatic network and chemokine-mediated signals are essential for leukocyte traffic during the proximal steps of alloimmune response. We aimed to determine the role of lymphatic vessels and their principal growth signaling pathway, vascular endothelial growth factor (VEGF)-C/D/VEGFR-3, during acute and chronic rejection in cardiac allografts. METHODS AND RESULTS: Analysis of heterotopically transplanted rat cardiac allografts showed that chronic rejection increased VEGF-C(+) inflammatory cell and hyaluronan receptor-1 (LYVE-1)(+) lymphatic vessel density. Allograft lymphatic vessels were VEGFR-3(+), contained antigen-presenting cells, and produced dendritic cell chemokine CCL21. Experiments with VEGFR-3/LacZ mice or mice with green fluorescent protein-positive bone marrow cells as cardiac allograft recipients showed that allograft lymphatic vessels originated almost exclusively from donor cells. Intraportal adenoviral VEGFR-3-Ig (Ad.VEGFR-3-Ig/VEGF-C/D-Trap) perfusion was used to inhibit VEGF-C/D/VEGFR-3 signaling. Recipient treatment with Ad.VEGFR-3-Ig prolonged rat cardiac allograft survival. Ad.VEGFR-3-Ig did not affect allograft lymphangiogenesis but was linked to reduced CCL21 production and CD8(+) effector cell entry in the allograft. Concomitantly, Ad.VEGFR-3-Ig reduced OX62(+) dendritic cell recruitment and increased transcription factor Foxp3 expression in the spleen. In separate experiments, treatment with a neutralizing monoclonal VEGFR-3 antibody reduced arteriosclerosis, the number of activated lymphatic vessels expressing VEGFR-3 and CCL21, and graft-infiltrating CD4(+) T cells in chronically rejecting mouse cardiac allografts. CONCLUSIONS: These results show that VEGFR-3 participates in immune cell traffic from peripheral tissues to secondary lymphoid organs by regulating allograft lymphatic vessel CCL21 production and suggest VEGFR-3 inhibition as a novel lymphatic vessel-targeted immunomodulatory therapy for cardiac allograft rejection and arteriosclerosis.


Assuntos
Arteriosclerose/prevenção & controle , Quimiocina CCL21/biossíntese , Transplante de Coração/imunologia , Imunomodulação/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos , Arteriosclerose/tratamento farmacológico , Movimento Celular/imunologia , Rejeição de Enxerto/imunologia , Camundongos , Camundongos Knockout , Ratos , Transdução de Sinais/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia
17.
EMBO J ; 29(8): 1377-88, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20224550

RESUMO

The vascular endothelial growth factors VEGFA and VEGFC are crucial regulators of vascular development. They exert their effects by dimerization and activation of the cognate receptors VEGFR2 and VEGFR3. Here, we have used in situ proximity ligation to detect receptor complexes in intact endothelial cells. We show that both VEGFA and VEGFC potently induce formation of VEGFR2/-3 heterodimers. Receptor heterodimers were found in both developing blood vessels and immature lymphatic structures in embryoid bodies. We present evidence that heterodimers frequently localize to tip cell filopodia. Interestingly, in the presence of VEGFC, heterodimers were enriched in the leading tip cells as compared with trailing stalk cells of growing sprouts. Neutralization of VEGFR3 to prevent heterodimer formation in response to VEGFA decreased the extent of angiogenic sprouting. We conclude that VEGFR2/-3 heterodimers on angiogenic sprouts induced by VEGFA or VEGFC may serve to positively regulate angiogenic sprouting.


Assuntos
Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Humanos , Neovascularização Fisiológica , Multimerização Proteica , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
18.
Cancer ; 116(4 Suppl): 1027-32, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20127948

RESUMO

The human vascular endothelial growth factor receptor-1 (VEGFR-1, or Flt-1) is widely expressed in normal and pathologic tissue and contributes to the pathogenesis of both neoplastic and inflammatory diseases. In human cancer, VEGFR-1 mediated signaling is responsible for both direct tumor activation and angiogenesis. VEGFR-1 mediated activation of nonmalignant supporting cells, particularly stromal, dendritic, hematopoietic cells, and macrophages, is also likely important for cancer pathogenesis. VEGFR-1 is also hypothesized to enable the development of cancer metastases by means of activation and premetastatic localization in distant organs of bone marrow-derived hematopoietic progenitor cells, which express VEGFR-1. IMC-18F1 is a fully human IgG(1) antibody that binds to VEGFR-1 and has been associated with the inhibition of cancer growth in multiple in vitro and human tumor xenograft models. The preliminary results of phase 1 investigations have also indicated a favorable safety profile for IMC-18F1 at doses that confer antibody concentrations that are associated with relevant antitumor activity in preclinical models.


Assuntos
Antineoplásicos/uso terapêutico , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Inflamação/metabolismo , Ligantes , Modelos Biológicos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Fisiológica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia
19.
Arthritis Rheum ; 60(9): 2666-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19714652

RESUMO

OBJECTIVE: This study was undertaken to investigate the effect of lymphatic inhibition on joint and draining lymph node (LN) pathology during the course of arthritis progression in mice. METHODS: Tumor necrosis factor (TNF)-transgenic mice were used as a model of chronic inflammatory arthritis. Mice were subjected to contrast-enhanced magnetic resonance imaging to obtain ankle and knee joint synovial volumes and draining popliteal LN volumes before and after 8 weeks of treatment with vascular endothelial growth factor receptor 3 (VEGFR-3) neutralizing antibody, VEGFR-2 neutralizing antibody, or isotype IgG. Animals were subjected to near-infrared lymphatic imaging to determine the effect of VEGFR-3 neutralization on lymph transport from paws to draining popliteal LNs. Histologic, immunohistochemical, and reverse transcriptase-polymerase chain reaction analyses were used to examine lymphatic vessel formation and the morphology of joints and popliteal LNs. RESULTS: Compared with IgG treatment, VEGFR-3 neutralizing antibody treatment significantly decreased the size of popliteal LNs, the number of lymphatic vessels in joints and popliteal LNs, lymphatic drainage from paws to popliteal LNs, and the number of VEGF-C-expressing CD11b+ myeloid cells in popliteal LNs. However, it increased the synovial volume and area of inflammation in ankle and knee joints. VEGFR-2 neutralizing antibody, in contrast, inhibited both lymphangiogenesis and joint inflammation. CONCLUSION: These findings indicate that lymphangiogenesis and lymphatic drainage are reciprocally related to the severity of joint lesions during the development of chronic arthritis. Lymphatic drainage plays a beneficial role in controlling the progression of chronic inflammation.


Assuntos
Artrite/metabolismo , Inflamação/metabolismo , Linfonodos/irrigação sanguínea , Linfonodos/metabolismo , Neovascularização Fisiológica/fisiologia , Índice de Gravidade de Doença , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos/farmacologia , Artrite/patologia , Artrite/fisiopatologia , Antígeno CD11b/metabolismo , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Inflamação/patologia , Inflamação/fisiopatologia , Linfonodos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Endocrinology ; 150(8): 3845-54, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19406950

RESUMO

Implantation of an embryo induces rapid proliferation and differentiation of uterine stromal cells, forming a new structure, the decidua. One salient feature of decidua formation is a marked increase in maternal angiogenesis. Vascular endothelial growth factor (VEGF)-dependent pathways are active in the ovary, uterus, and embryo, and inactivation of VEGF function in any of these structures might prevent normal pregnancy development. We hypothesized that decidual angiogenesis is regulated by VEGF acting through specific VEGF receptors (VEGFRs). To test this hypothesis, we developed a murine pregnancy model in which systemic administration of a receptor-blocking antibody would act specifically on uterine angiogenesis and not on ovarian or embryonic angiogenesis. In our model, ovarian function was replaced with exogenous progesterone, and blocking antibodies were administered prior to embryonic expression of VEGFRs. After administration of a single dose of the anti-VEGFR-2 antibody during the peri-implantation period, no embryos were detected on embryonic d 10.5. The pregnancy was disrupted because of a significant reduction in decidual angiogenesis, which under physiological conditions peaks on embryonic d 5.5 and 6.5. Inactivation of VEGFR-3 reduced angiogenesis in the primary decidual zone, whereas administration of VEGFR-1 blocking antibodies had no effect. Pregnancy was not disrupted after administration of anti-VEGFR-3 or anti-VEGFR-1 antibodies. Thus, the VEGF/VEGFR-2 pathway plays a key role in the maintenance of early pregnancy through its regulation of peri-implantation angiogenesis in the uterine decidua. This newly formed decidual vasculature serves as the first exchange apparatus for the developing embryo until the placenta becomes functionally active.


Assuntos
Decídua/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Proliferação de Células , Decídua/efeitos dos fármacos , Decídua/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Ovariectomia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Útero/efeitos dos fármacos , Útero/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA