Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 137-145, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38239284

RESUMO

Pure and Ni-Fe-codoped Zn1 - 2xNixFexO (x = 0.01, 0.02, 0.03, and 0.04) nanoparticles were effectively synthesized using a sol-gel autocombustion procedure. The structural, optical, morphological, and magnetic properties were determined by using X-ray diffraction (XRD), ultraviolet-visible (UV-vis), scanning electron microscopy, and vibrating sample magnetometer techniques. The XRD confirmed the purity of the hexagonal wurtzite crystal structure. XRD analysis further indicated that Fe and Ni successfully substituted the lattice site of Zn and generated a single-phase Zn1-2xNixFexO magnetic oxide. In addition, a significant morphological change was observed with an increase in the dopant concentration by using high-resolution scanning electron microscopy. The UV-vis spectroscopy analysis indicated the redshift in the optical band gap with increasing dopant concentration signifying a progressive decrease in the optical band gap. The vibrating sample magnetometer analysis revealed that the doped samples exhibited ferromagnetic properties at room temperature with an increase in the dopant concentration. Dopant concentration was confirmed by using energy-dispersive X-ray spectroscopy. The current results provide a vital method to improve the magnetic properties of ZnO nanoparticles, which may get significant attention from researchers in the field of magnetic semiconductors.

2.
Nanotechnology ; 33(29)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504008

RESUMO

Herein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV-vis absorption spectroscopy in the wavelength range of 250-800 nm. Through Tauc's plot, the slight decrease from 3.3 to 3.2 eV in band gap energy has been elucidated (in the case of Sr-doped ZnO), which has been further confirmed by the quenching in the intensity of Photoluminescence (PL) emission spectrum. This may be due to sub-band level formation between valence and conduction band, caused by the impregnation of Sr2+ions into ZnO host. The morphological study has also been performed using Field Emission Scanning Electron Microscope, which indicates nanoparticles (NPs) based surface texture for both photocatalysts. During the photocatalytic activity study, after 30 min irradiation of visible light, ∼65.7% and ∼84.8% photocatalytic degradation of MG dye has been achieved for pristine and Sr-doped (2 wt%) ZnO photocatalysts, respectively. The rate of photocatalytic reaction (K) has been observed to be âˆ¼0.06399 min-1for Sr-doped (2 wt%), whereas nearly half magnitude âˆ¼0.03403 min-1has been observed for pristine ZnO, respectively. The significantly improved photodegradation activity may be ascribed to the relatively broader optical absorption capability, surface defects and the enhanced charge separation efficiency of the Sr-doped ZnO photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA