Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Adv ; 70: 108304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38135131

RESUMO

Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.


Assuntos
Nanoestruturas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Enzimas Imobilizadas/química , Endopeptidases/química , Biocatálise
2.
Crit Rev Food Sci Nutr ; : 1-27, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930305

RESUMO

Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.

3.
Arch Microbiol ; 204(5): 267, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35438350

RESUMO

Fungal spoilage led to a considerable economic loss of foodstuff which ultimately affects public health due to mycotoxins production. Moreover, the consumption of commercial antifungal drugs creates side effects and develops antifungal resistance. To overcome these challenges, the current work was aimed to investigate novel antifungal cyclic dipeptide (CDP) from Lactobacillus coryniformis (Loigolactobacillus coryniformis) BCH-4. CDPs have flexible, cyclic, and stable conformation. The proline-based CDPs provide additional structural compatibility and bio-functional values. Keeping in view, high-performance liquid chromatography (HPLC) was performed to explore cyclo(L-Leu-L-Pro) from L. coryniformis BCH-4. The HPLC detected concentration (135 ± 7.07 mg/mL) exhibited in vitro antifungal activity of 5.66 ± 0.57 mm (inhibitory zone) against Aspergillus flavus. Based on these results, cyclo(L-Leu-L-Pro) was used as a bioprotectant for selected food samples (grapes, lemon, cashew nuts, and almonds). A significant impact of cyclo(L-Leu-L-Pro) was observed in contrast with MRS broth (control) and cell-free supernatant. In silico molecular docking analysis of this CDP was carried out against FAD glucose dehydrogenase, dihydrofolate reductase, and urate oxidase of A. flavus as target proteins. Among these proteins, FAD glucose dehydrogenase exerted strong interactions with cyclo(L-Leu-L-Pro) having S-score of - 8.21. The results evaluated that the detected CDP has strong interactions with selected proteins, causing excellent growth inhibition of A. flavus. Therefore, cyclo(L-Leu-L-Pro) could be used as a potent bioprotectant against food-borne pathogenic fungi.


Assuntos
Antifúngicos , Aspergillus flavus , Antifúngicos/química , Proliferação de Células , Flavina-Adenina Dinucleotídeo , Lactobacillus , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
4.
Environ Res ; 211: 113060, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283076

RESUMO

The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Estruturas Metalorgânicas , Nanotubos de Carbono , Poluentes Ambientais/toxicidade , Ferro , Nanotubos de Carbono/toxicidade , Poluentes Orgânicos Persistentes , Dióxido de Silício
5.
J Basic Microbiol ; 62(11): 1319-1336, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35048396

RESUMO

Polysaccharides are biobased polymers obtained from renewable sources. They exhibit various interesting features including biocompatibility, biodegradability, and nontoxicity. Microbial polysaccharides are produced by several microorganisms including yeast, fungi, algae, and bacteria. Microbial polysaccharides have gained high importance in biotechnology due to their novel physiochemical characteristics and composition. Among microbial polysaccharides, xanthan, alginate, gellan, and dextran are the most commonly reported polysaccharides for the development of biomimetic materials for biomedical applications including targeted drug delivery, wound healing, and tissue engineering. Several chemical and physical cross-linking reactions are performed to increase their technological and functional properties. Owning to the broad-scale applications of microbial polysaccharides, this review aims to summarize the characteristics with different ways of physical/chemical crosslinking for polysaccharide regulation. Recently, several biopolymers have gained high importance due to their biologically active properties. This will help in the formation of bioactive nutraceuticals and functional foods. This review provides a perspective on microbial polysaccharides, with special emphasis given to applications in promising biosectors and the subsequent advancement on the discovery and development of new polysaccharides for adding new products.


Assuntos
Polissacarídeos , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Polímeros , Alginatos , Biopolímeros
6.
Chemosphere ; 288(Pt 3): 132618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34678347

RESUMO

Population growth and industrialization is associated with the elevation of hazardous pollutants, including heavy metals, biomedical wastes, personal-care products, endocrine-disrupters, pharmaceutically active compounds, and colorants in the environment. The scientific focus has been devoted to developing novel adsorbents to mitigate hazardous pollutants by constructing hybrids of different polymers and nano-structured materials for improved workability and physicochemical attributes. Recently, much attention has been devoted to nanomaterials in environmental remediation, owning to their exceptional characteristics including novel electrical/chemical features, quantum size effects, tunable functionalization, high scalability, and surface-area-to-volume ratio. Target-specific designing of nanocomposites impart high functionality. The cost-effective and eco-friendly synthesis of bioadsorbent materials is increasing for the removal of hazardous pollutants. Due to biocompatible, biodegradable, and eco-friendly nature, sodium alginate has been widely reported for the preparation of bioadsorbent materials to remove different inorganic/organic pollutants. In this review, the potentialities of alginate-based nanocomposites have been described for environmental remediation purposes. Different nanomaterials, including silica, metallic oxide, graphene oxide, hybrid inorganic-organic, non-magnetic-magnetic, carbon nanorods, nanotubes, polymeric nanocarriers, and several other materials have been described in combination with alginate biopolymer for environmental remediation.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Alginatos , Poluentes Químicos da Água/análise
7.
Chemosphere ; 292: 133320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34952020

RESUMO

Food spoilage and safety are key concerns of the modern food sector. Among them, several types of polluting agents are the prime grounds of food deterioration. In this context, nanotechnology-based measures are setting new frontiers to strengthen food applications. Herein, we summarize the nanotechnological dimension of the food industry for both processing and packaging applications. Active bioseparation, smart delivery, nanoencapsulation, nutraceuticals, and nanosensors for biological detection are a few emerging topics of nanobiotechnology in the food sector. The development of functional foods is another milestone set by food nanotechnology by building the link between humans and diet. However, the establishment of optimal intake, product formulations, and delivery matrices, the discovery of beneficial compounds are a few of the key challenges that need to be addressed. Nanotechnology provides effective solutions for the aforementioned problem giving various novel nanomaterials and methodologies. Various nanodelivery systems have been designed, e.g., cochleate, liposomes, multiple emulsions, and polysaccharide-protein coacervates. However, their real applications in food sciences are very limited. This review also provides the status and outlook of nanotechnological systems for future food applications.


Assuntos
Poluentes Ambientais , Nanoestruturas , Indústria Alimentícia , Inocuidade dos Alimentos , Indústria de Processamento de Alimentos , Humanos , Nanotecnologia
8.
J Environ Manage ; 300: 113762, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543967

RESUMO

Biochar is a well-known carbon material with diversified functionalities and excellent physicochemical characteristics with high wastewater treatment potential. This review aims to summarize recent advancements in the development of biochar and biochar-based nanohybrid materials as a potential tool for the removal of harmful organic compounds such as synthetic dyes/effluents. The formation of biochar using pyrolysis of renewable feedstocks and their applications in various industries are explained hereafter. The characteristics and construction of biochar-based hybrid materials are explained in detail. Diversity of feedstocks, including municipal wastes, industrial byproducts, agricultural, and forestry residues, endows different biochar types with a wide structural variety. The production of cost-effective biochar drives the interest in manipulating biochars and induces desire functionality using nanoscale reinforcements. Various types of biochars, such as magnetic biochar, layered nanomaterial coated biochar, nanometallic oxide composites, chemically and physically functionalized biochar, have been produced. With the aid of nanomaterial, hybrid biochar exhibits a high potential to remove toxic contaminants. Depending upon biochar type, dyes/effluents can be removed via different mechanisms, including the Fenton process, photocatalytic degradation, π-π interaction, electrostatic interaction, and physical adsorption. In conclusion, desired physicochemical features, and tunable surface properties of biochar present high potential material in removing organic dyes and other effluents. The blended biochar with different materials/nanomaterials endows broader development and multi-functional opportunities for treating dyes/effluents.


Assuntos
Poluentes Ambientais , Adsorção , Carvão Vegetal , Pirólise
9.
Int J Biol Macromol ; 190: 700-712, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520777

RESUMO

Fast industrialization and population growth are associated with the increased release of hazardous contaminants in the environment. These hazardous substances, including pharmaceutical, biomedical, personal-care products, heavy metals, endocrine-disrupters, and colorants, pollute the ecosystem by disturbing nature's balance. Nanotechnology has paved new horizons in biochemical engineering by designing novel approaches of integrating nanoscale science with biotechnology to construct improved quality materials for target uptake of pollutants. Recently, nanostructured materials have emerged as research and development frontiers owing to their excellent properties. The tailored designing of nanohybrids constructs with physicochemical alteration enables the nano-bioadsorbent with high target specificity and efficiency. The development of eco-friendly, biodegradable, cost-efficient, and biopolymer-based nanohybrid constructs is gaining attention to remove hazardous environmental pollutants. κ-carrageenan biopolymer is frequently used with different nanomaterials to design nanohybrid bio-adsorbents to remove various contaminants. Herein, the potentialities of carrageenan-based nanohybrid constructs in environmental remediation have been summarized. Different nanostructures, e.g., silica, non-magnetic/magnetic, carbon nanotubes/nanorods, nanoclay/nanomembrane, metal organic frameworks, graphene oxide, and other nanomaterials have been described in combination with carrageenan biopolymers focusing on environmental remediation.


Assuntos
Carragenina/química , Poluentes Ambientais/isolamento & purificação , Recuperação e Remediação Ambiental , Nanoestruturas/química , Fenômenos Magnéticos , Estruturas Metalorgânicas/química
10.
Int J Biol Macromol ; 185: 1-19, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34146557

RESUMO

Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work.


Assuntos
Biopolímeros/química , Celulases/metabolismo , Celulose/química , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Indústria Alimentícia , Nanoestruturas
11.
Adv Colloid Interface Sci ; 293: 102438, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023567

RESUMO

The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nanobiocatalysis (NBC). NBC is an emerging innovation that offers significant considerations to expand the designing and fabrication of robust catalysts at the nanoscale with improved catalytic characteristics for multipurpose bioprocessing applications. In addition, nanostructured materials with unique structural, physical, chemical, and functional entities have manifested significant contributions in mimicking the enzyme microenvironment. A fine-tuned enzyme microenvironment with an added-value of NBC offers chemo- regio- and stereo- selectivities and specificities. Furthermore, NBC is growing rapidly and will become a powerful norm in bio-catalysis with much controlled features, such as selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, improved mass transfer efficiency, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we present and discuss advances in NBC and its bioprocessing applications in different fields. Briefly, this review is focused on four parts, i.e., (1) NBC as a drive towards applied nanobiocatalysts (as an introduction with opportunities), (2) promising nanocarriers to develop nanobiocatalysts, (3) applications in the fields of biotransformation, biofuel production, carbohydrate hydrolysis, bio-/nanosensing, detergent formulations, and extraction and purification of value-added compounds, and (4) current challenges, concluding remarks, and future trends.


Assuntos
Enzimas Imobilizadas , Nanoestruturas , Catálise , Engenharia
12.
Int J Biol Macromol ; 181: 275-290, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781811

RESUMO

Nanocellulose is a promising "green" nanomaterial that has recently gained scientific interest because of its excellent characteristics, such as less risks of toxicity, biocompatibility, biodegradability, recyclability, and tunable surface features. Initially, three nanocellulose types (i.e., bacterial nanocellulose, nanocrystals, and nanofibers) and their potential biotechnological production routes have been discussed in detail. Contemporary studies are discussed in the development of nanocellulose aerogels, responsive hydrogels, injectable hydrogels/implants, and magnetic nanocellulose. Moreover, the development of hydrogels and potential crosslinking agents for the induction of desired properties has been described. Studies have revealed that the release kinetics of nanocellulosic gels/hydrogels varies from few minutes to several days depending on the given physicochemical conditions. However, such systems provide sustained drug release properties, so they are considered "smart" systems. Recent studies on controlled drug delivery systems have demonstrated their considerable potential for the next-generation transport of therapeutic drugs to target sites via various administration routes. This review presents the selection of appropriate sources and processing methodologies for the development of target nanocellulose types. It explains the potential challenges and opportunities and recommends future research directions about the smart delivery of therapeutic drugs.


Assuntos
Celulose/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Nanoestruturas/química , Nanotecnologia/métodos , Concentração de Íons de Hidrogênio , Nanoestruturas/ultraestrutura
13.
Int J Biol Macromol ; 176: 540-557, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607134

RESUMO

Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Nanocompostos/química , Nanopartículas/química , Polissacarídeos/química , Humanos
14.
Food Res Int ; 137: 109625, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233213

RESUMO

In food industry, a growing concern is the use of suitable packaging material (i.e., biodegradable coatings and films) with enhanced thermal, mechanical and barrier characteristics to prevent from contamination and loss of foodstuff. Biobased polymer resources can be used for the development of biodegradable bioplastics. To achieve this goal, biopolymers should be economic, renewable and abundantly available. Bioplastic packaging materials based on renewable biomass could be used as sustainable alternative to petrochemically-originated plastic materials. This review summarizes the recent advancements in biopolymer-based coatings and films for active food packaging applications. Microbial polymers (PHA and PLA), wood-based polymers (cellulose, hemicellulose, starch & lignin), and protein-based polymers (gelatin, keratin, wheat gluten, soy protein and whey protein isolates) were among the materials most widely exploited for the development of smart packaging films. These biopolymers are able to synthesize coatings and films with good barrier properties against food borne pathogens and the transport of gases. Biobased reinforcements e.g., plant essential oils and natural additives to bioplastic films improve oxygen barrier, antibacterial and antifungal properties. To induce the desired functionality the simultaneous utilization of different synthetic and biobased polymers in the form of composites/blends is also an emerging area of research. Nanoscale reinforcements into bioplastic packaging have also been reported to improve packaging characteristics ultimately increasing food shelf life. The development of bioplastic/biocomposite and nanobiocomposites exhibits high potential to replace nonbiodegradable materials with characteristics comparable to fossil-based plastics, additionally, giving biodegradable and compostable characteristics. The idea of utilization of renewable biomass and the implications of biotechnology can firstly reduce the burden from fossil-resources, while secondly promoting biobased economy.


Assuntos
Embalagem de Alimentos , Plásticos , Celulose , Lignina , Polímeros
15.
Biomed Phys Eng Express ; 6(1): 012003, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33438589

RESUMO

Near-infrared fluorescent dyes based on small organic molecules are believed to have a great influence on cancer diagnosis at large and targeted cancer cell bioimaging, in particular. NIR dyes-based organic molecules have notable characteristics features, such as high tissue penetration and low tissue autofluorescence in the NIR spectral region. Cancer targeted bioimaging relies significantly on the synthesis of highly specific molecular probes with excellent stability. Recently, NIR dyes have emerged as unique fluorescent probes for cancer bioimaging. These current advancements have overcome many limitations of conventional NIR probes e.g., poor photostability and hydrophilicity, insufficient stability and low quantum yield. The further potential lies in NIR dyes or NIR dyes-coated nanocarriers conjugated with cancer-specific ligand (e.g., peptides, antibodies, proteins or other small molecules). Multifunctional NIR dyes have synthesized, which efficiently accumulate in cancer cells without requiring chemical conjugation and also these dyes have presented novel photophysical and pharmaceutical properties for in vivo imaging. This review highlights the recently developed NIR dyes with novel applications in cancer bioimaging. We believe that these novel fluorophores will enhance our understanding of cancer imaging and pave a new road in cancer diagnosis and treatment.


Assuntos
Diagnóstico por Imagem/métodos , Corantes Fluorescentes/química , Nanopartículas/química , Neoplasias/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Humanos
16.
Int J Biol Macromol ; 151: 984-992, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733253

RESUMO

Exopolysaccharides (EPS) are microbially-originated, complex biosynthetic polymers, mainly carbohydrates in nature. They have gained attention of modern researches due to their novel physicochemical characteristics. However, the development of cost-effective strategies to improve the EPS yield, remains a challenge. In this study, cost-effective EPS production was carried out from B. licheniformis in solid state fermentation of mango peels substrate with waste-to-value theme. Initially, B. licheniformis was exposed to ultraviolet (UV) radiations of short wavelength which significantly improved the EPS yield (from 3.4 to 4.6 g/L). The highest EPS producing mutant strain (B. licheniformis MS3) was further proceeded for yield optimization using RSM-CCD approach. Optimization improved the yield >3.2-folds (from 4.6 to 15.6 g/L). The optimally yielded fraction was characterized using HPLC, FT-IR and SEM analyses. HPLC revealed the hetero-polymeric nature of EPS containing mannose (20.60%), glucose (46.80%), and fructose (32.58%) subunits. FT-IR spectroscopy revealed the presence of hydroxyl and carboxyl functional groups, and glycosidic linkages among monosaccharides. SEM microstructure showed that EPS comprise smoother surface with less porosity. Studies on functional characteristics revealed the presence of hydrophilic moieties among EPS with moderate water (105.3%) and oil (86.3%) uptake capacity. The EPS exhibited excellent emulsifying properties showed good stability against all hydrocarbons/oils tested. In conclusion, the cost-effective EPS production with multifunctional properties, this study may be valuable for various biochemical and biotechnological sectors.


Assuntos
Bacillus licheniformis/química , Polissacarídeos Bacterianos/química , Bacillus licheniformis/metabolismo , Emulsões , Fermentação , Engenharia Metabólica , Estrutura Molecular , Monossacarídeos/análise , Mutagênese , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/ultraestrutura , Solubilidade , Análise Espectral , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA