Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 435: 128990, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523091

RESUMO

This paper proposes a Fenton-like reaction activated by nanoscale zero-valent iron (nZVI) for aqueous monomethylmercury (MMHg) decomposition. Reacting 10 µg L-1 MMHg with 280 mg L-1 nZVI removed 70% of the aqueous MMHg within 1 min, and its main product was aqueous Hg(II). Within 1 - 5 min, the aqueous Hg(II) decreased while the aqueous, solid, and gas-phase Hg(0) increased with 92% MMHg removal. Then, a secondary Hg(II) reduction to solid Hg(0) was prevalent within 30 - 60 min, with 98% MMHg removal. Diverse-shaped magnetite crystals were observed on the surface of nZVI in 2 h, suggesting that Fe(II) oxidation on magnetite can be a source of electrons for secondary Hg(II) reduction. When FeCl2 and H2O2 were added to the MMHg solution without nZVI, 99% of the MMHg changed to Hg(II) within 1 min. The reactive oxygen species (ROS) produced by the Fenton-like reaction accounted for the rapid demethylation but not for the further reduction of Hg(II) to Hg(0). The results suggest a three-step pathway of MMHg decomposition by nZVI: (1) rapid MMHg demethylation by ROS; (2) rapid Hg(II) reduction by Fe(0); and (3) slow Hg(II) reduction by magnetite on the nZVI surface.


Assuntos
Mercúrio , Poluentes Químicos da Água , Desmetilação , Óxido Ferroso-Férrico , Peróxido de Hidrogênio , Ferro/química , Espécies Reativas de Oxigênio , Água , Poluentes Químicos da Água/química
2.
Environ Sci Pollut Res Int ; 28(29): 39840-39852, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33765261

RESUMO

This study assessed the critical soil characteristics affecting mercury (Hg) bioavailability to the earthworm Eisenia fetida using the diffusive gradient in thin films (DGT) method. The soil samples were collected from a tributary of the Hyeongsan River contaminated with industrial waste and landfill leachates called Gumu Creek. The Hg concentration in the soil had a range of 0.33-170 µg g-1 (average 33 ± 56 µg g-1), and the Hg concentration of earthworms incubated in the soils was 0.83-11 µg g-1 (average 2.9 ± 3.2 µg g-1). When correlation analysis was used to detect the key variables among the soil properties related to Hg accumulation in the soils, earthworms, and resins, the water-holding capacity, which is covaried with the organic matter content, was determined to be a primary factor in increasing Hg accumulation in the soils, earthworms, and resins. However, the experimentally determined earthworm bioaccumulation factor and the DGT accumulation factor were negatively affected by the water-holding capacity. Therefore, the water-holding capacity played a dual role in the Gumu Creek deposits: increasing the soil Hg concentration and decreasing Hg bioavailability and leachability. Further, the DGT-Hg flux was positively correlated with the Hg concentration in earthworms (r = 0.93). Although the earthworm accumulation of Hg is not processed by passive diffusion, this study proves that the DGT method is promising for predicting soil Hg bioavailability to the earthworm E. fetida, and the water-holding capacity simultaneously regulates Hg availability to the DGT and the earthworms.


Assuntos
Mercúrio , Oligoquetos , Poluentes do Solo , Animais , Disponibilidade Biológica , Mercúrio/análise , Solo , Poluentes do Solo/análise
3.
J Hazard Mater ; 398: 122874, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512443

RESUMO

Although there have been multiple studies on the effects of natural organic matter (NOM) on zero-valent iron (ZVI) removal of several regulated heavy metal ions from contaminated water, the role of NOM on Hg(II) removal by nanoscale ZVI (nZVI) has not yet been studied. The experimental results showed that in the presence of 100 mg L-1 of Suwannee River NOM (SRNOM), the Hg(II) removal ratio by nZVI decreased from 89% to 36% after 80 min of reaction. Similar trends were observed in the long-term test maintained for 15 days, attributable to the surface passivation of nZVI by SRNOM. In contrast, addition of 100 µM glutathione (GSH) to the nZVI suspensions increased the Hg(II) removal ratio from 85% to 96% after 15 days of reaction. Furthermore, adding 100 µM of GSH to the nZVI and SRNOM suspensions largely improved the removal efficiency of Hg(II) to be > 99% after 9 days of reaction, related to the enhanced dissolution of Fe(II) and consequent formation of lepidocrocite and maghemite on the nZVI surface. The addition of thiolic compounds is suggested as a promising step in overcoming the inhibitory effect of SRNOM for the remediation of Hg(II) using nZVI technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA