Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585943

RESUMO

Tissue barriers must be rapidly restored after injury to promote regeneration. However, the mechanism behind this process is unclear, particularly in cases where the underlying extracellular matrix is still compromised. Here, we report the discovery of matrimeres as constitutive nanoscale mediators of tissue integrity and function. We define matrimeres as non-vesicular nanoparticles secreted by cells, distinguished by a primary composition comprising at least one matrix protein and DNA molecules serving as scaffolds. Mesenchymal stromal cells assemble matrimeres from fibronectin and DNA within acidic intracellular compartments. Drawing inspiration from this biological process, we have achieved the successful reconstitution of matrimeres without cells. This was accomplished by using purified matrix proteins, including fibronectin and vitronectin, and DNA molecules under optimal acidic pH conditions, guided by the heparin-binding domain and phosphate backbone, respectively. Plasma fibronectin matrimeres circulate in the blood at homeostasis but exhibit a 10-fold decrease during systemic inflammatory injury in vivo . Exogenous matrimeres rapidly restore vascular integrity by actively reannealing endothelial cells post-injury and remain persistent in the host tissue matrix. The scalable production of matrimeres holds promise as a biologically inspired platform for regenerative nanomedicine.

2.
Biomater Adv ; 157: 213714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096647

RESUMO

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Assuntos
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
3.
Int J Pharm ; 642: 123110, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37302672

RESUMO

Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.


Assuntos
Substitutos Ósseos , Cissus , Osteogênese , Durapatita , Cerâmica
4.
Artigo em Inglês | MEDLINE | ID: mdl-36749176

RESUMO

Developing advanced methods for effective bone reconstructive strategies in case of critical bone defects caused by tumor resection, trauma, and other implant-related complications remains a challenging problem in orthopedics. In the clinical management of bone diseases, there is a paradigm shift in using local drugs at the injury site; however, the dead space created during the surgical debridement of necrotic bone and soft tissues (periosteum and underlying muscle) leads to ineffective bone formation, thereby leading to secondary complications, and thus calls for better regenerative approaches. In this study, we have utilized an exosome-functionalized doxorubicin-loaded biodegradable nanocement (NC)-based carrier along with a Cissus quadrangularis (CQ) extract-laden antioxidant herbal membrane for simultaneously managing the periosteum as well as bone formation in the tumor resection model of osteosarcoma. We initially evaluated the efficacy of scaffolds for in vitro mineralization and bone formation. To examine the in vivo effectiveness, we developed a human osteosarcoma cell line (Saos-2)-induced tumor xenograft model with a critical-sized bone defect. The findings revealed that doxorubicin released from NC was successful in killing the tumor cells and was present even after 30 days of implantation. Additionally, the incorporation of exosomes aided the bone formation, resulting in around a 2.6-fold increase in the bone volume compared to the empty group as evaluated by micro-CT. The herbal membrane assisted in the development of periosteum and mineralizing bone callous as validated through histological and immunofluorescence analysis. Thus, our findings describe a one-step biomaterial-based cell-free approach to regenerate bone in osteosarcoma and prevent further fracture due to the complete development of periosteum and lost bone.

5.
Biomater Adv ; 142: 213133, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215747

RESUMO

Bone and joint infections pose a serious challenge in the orthopedic medical condition which presents a major health care problem and economic burden to the patients. The current treatment strategies adopted have a very limited successful outcome in majority of the cases and need serious reconsiderations in terms of management, diagnosis and effective treatment approach. Herein, we have developed a composite cryogel scaffold from nanohydroxyapatite and collagen mimicking natural bone composition for the local delivery of antibiotic to treat osteomyelitis. The biomimetic and biodegradable antibiotic-loaded composite scaffold was found to be biocompatible with potent osteogenic capacity and anti-infective characteristics under in vitro conditions. Moreover, the anti-infective potency of the antibiotic-loaded composite cryogel was also evaluated in rat osteomyelitis model to cure the infection and promote bone healing. It was observed that anti-infective collagen-nanohydroxyapatite composite cryogel when loaded with bone morphogenetic protein-2 (BMP-2) and zoledronic acid (ZA) could completely eradicate the infection in rat femoral condyle and simultaneously, accelerate bone healing at the dead space created during surgical procedures. The approach developed in this study is the development of biomimetic and bioactive composite carrier of antibiotics for the treatment of bone infection. The findings of this study insinuate that this antibiotic-loaded composite cryogel scaffold could potentially be used as an anti-infective biomaterial for the treatment of bone infections which will simultaneosuly promote bone healing at the dead space created during surgical procedures.


Assuntos
Anti-Infecciosos , Osteomielite , Ratos , Animais , Criogéis , Osteomielite/tratamento farmacológico , Fêmur , Colágeno , Antibacterianos/farmacologia
6.
Chem Commun (Camb) ; 57(60): 7422-7425, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34231564

RESUMO

Bioactive molecules that enhance or induce osteogenic potential of bone precursor cells have shown vital roles in bone tissue engineering. Herein, we report the design and synthesis of a novel diketopiperazine (DT) that induces osteoblastic differentiation of pre-osteoblasts and bone-marrow-derived stem cells in vitro and enhances the osteogenic potential of cryogel matrix. Such functional diketopiperazines can serve as potential scaffolds for bone healing and regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Criogéis/química , Dicetopiperazinas/farmacologia , Osteogênese/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Alicerces Teciduais/química , Animais , Proliferação de Células/efeitos dos fármacos , Dicetopiperazinas/síntese química , Dicetopiperazinas/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/toxicidade , Taurina/análogos & derivados , Taurina/farmacologia , Taurina/toxicidade , Engenharia Tecidual/métodos
7.
J Mater Chem B ; 9(32): 6281-6309, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34286815

RESUMO

Exosomes are naturally occurring nanovesicles of endosomal origin, responsible for cellular communication. Depending on the cell type, exosomes display disparity in the cargo and are involved in up/down regulation of different biological pathways. Naturally secreted exosomes, owing to their inherent delivery potential, non-immunogenic nature and limited structural resemblance to the cells have emerged as ideal candidates for various drug delivery and therapeutic applications. Moreover, the structural versatility of exosomes provides greater flexibility for surface modifications to be made in the native configuration, by different methods, like genetic-engineering, chemical procedures, physical methods and microfluidic-technology, to enhance the cargo quality for expanded biomedical applications. Post isolation and prior to engineering exosomes for various applications, the internal and external structural compositions of exosomes are studied via different techniques. Efficiency and scalability of the exosome modification methods are pivotal in determining the scope of the technique for clinical applications. This review majorly focuses on different methods employed for engineering exosomes, and advantages/disadvantages associated with different tailoring approaches, along with the efficacy of engineered exosomes in biomedical applications. Further, the review highlights the importance of a relatively recent avenue for delivery of exosomes via scaffold-based delivery of naïve/engineered exosomes for regenerative medicine and tissue engineering. This review is based on the recent knowledge generated in this field and our comprehension in this domain.


Assuntos
Bioengenharia/métodos , Exossomos/metabolismo , Transporte Biológico , Sistemas de Liberação de Medicamentos/métodos , Medicina Regenerativa
8.
Biomacromolecules ; 22(8): 3237-3250, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252271

RESUMO

The periosteum is an indispensable part of the bone that nourishes the cortical bone and acts as a repertoire of osteoprogenitor cells. Periosteal damage as a result of traumatic injuries, infections, or surgical assistance in bone surgeries is often associated with a high incidence of delayed bone healing (union or nonunion) compounded with severe pain and a risk of a secondary fracture. Developing bioengineered functional periosteal substitutes is an indispensable approach to augment bone healing. In this study, we have developed a biomimetic periosteum membrane consisting of electrospun oxygen-releasing antioxidant polyurethane on collagen membrane (polyurethane-ascorbic acid-calcium peroxide containing fibers on collagen (PUAOCC)). Further, to assist bone formation, we have developed a bioactive inorganic-organic composite cryogel (bioglass-collagen-gelatin-nanohydroxyapatite (BCGH)) as a bone substitute. In an in vitro simulated oxidative stress model, PUAOCC supported the primary periosteal cell survival. Moreover, in an in vivo, critical-sized (5.9 mm × 3.2 mm × 1.50 mm) unicortical rat tibial bone defect, implantation of PUAOCC along with the functionalized BCGH led to significant improvement in bone formation along with periosteal regeneration. The periosteal regeneration was confirmed by expression of periosteum-specific periostin and neuronal regulation-related protein markers. Our study demonstrates the development of a periosteum-mimicking membrane with promising applications to facilitate periosteal regeneration, thus assisting bone formation when used in combination with bone composites and mimicking the natural bone repair process.


Assuntos
Substitutos Ósseos , Periósteo , Animais , Regeneração Óssea , Osteogênese , Ratos , Engenharia Tecidual
9.
ACS Appl Bio Mater ; 4(4): 3716-3726, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014456

RESUMO

Ceramic biomaterials are promising alternatives to bone autografts. However, limited bioactivity affects their performance. Therefore, bioactive molecules and cells are often added to enhance their performance. Exosomes have emerged as cell-secreted vesicles, delivering proteins, lipids, and nucleic acids in a paracrine/endocrine fashion. We studied two complementary aspects required for exosome activity/therapy using purified exosomes: first, the intracellular uptake of labeled exosomes and second, the influence of delivered exosomes on cell behavior. Origin-specific differences in the characteristics of purified exosomes, quantification of time-dependent intracellular uptake of PKH-26-labeled exosomes by mesenchymal stem cells (MSCs) and preosteoblasts, and influence on cell behavior were evaluated. Furthermore, exosomes from osteoblasts and MSCs cultured under normal and osteogenic environments were isolated. There is little data available on the concentration and dose of exosomes required for bone regeneration. Therefore, equal amounts of quantified exosomes were implanted in vivo in rat tibia critical defects using a calcium sulfate-nano-hydroxyapatite nanocement (NC) bone filler as the carrier. Bone regeneration was quantified using micro-computed tomography and histology. Along with inducing early maturation and mineral deposition by primary preosteoblasts in vitro, exosome treatment also demonstrated a positive effect on bone mineralization in vivo. Our study concludes that providing a local delivery of exosomes loaded onto a slowly resorbing NC bone filler can provide a potential alternate to autografts as a bone substitute.


Assuntos
Doenças Ósseas/terapia , Substitutos Ósseos/uso terapêutico , Cerâmica/química , Exossomos/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Doenças Ósseas/veterinária , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Durapatita/química , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Próteses e Implantes , Ratos , Ratos Wistar
10.
ACS Appl Mater Interfaces ; 12(43): 48340-48356, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32993288

RESUMO

Large critical size bone defects are complicated to treat, and in many cases, autografts become a challenge due to size and availability. In such situations, a synthetic bone implant that can be patient-specifically designed and fabricated with control over parameters such as porosity, rigidity, and osteogenic cues can act as a potential synthetic bone substitute. In this study, we produced photocuring composite resins with poly(trimethylene carbonate) containing high ratios of bioactive ceramics and printed porous 3D composite scaffolds to be used as bone grafts. To enhance the overall surface area available for cell infiltration, the scaffolds were also filled with a macroporous cryogel. Furthermore, the scaffolds were functionalized with osteoactive factors: bone morphogenetic protein and zoledronic acid. The scaffolds were evaluated in vitro for biocompatibility and for functionality in vivo in critical bone defects (∼8 mm) in two clinically relevant rabbit models. These studies included a smaller study in rabbit tibia and a larger study in the rabbit cranium. It was observed that the bioactive molecule-functionalized 3D printed porous composite scaffolds provide an excellent conductive surface inducing higher bone formation and improved defect healing in both critical size long bones and cranial defects. Our findings provide strong evidence in favor of these composites as next generation synthetic bone substitutes.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Regeneração Óssea , Masculino , Osteogênese , Tamanho da Partícula , Porosidade , Coelhos , Propriedades de Superfície
11.
ACS Infect Dis ; 6(11): 2938-2949, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32966037

RESUMO

Next-generation treatment strategies to treat osteomyelitis with complete eradication of pathogen at the bone nidus and prevention of emergence of drug resistance is a real challenge in orthopedics. Conventional treatment strategies including long-term adherence of patients to systemic antibiotic delivery, local delivery using nondegradable vehicles, and surgical debridement are not completely effective in achieving successful results. In this study, a broad-spectrum antibiotic, rifampicin (RFP), was incorporated into a biphasic nanohydroxyapatite (nHAP)/calcium sulfate ceramic carrier (NC) system. In vivo release and distribution of rifampicin was evaluated for a period of one month by implanting NC and NC + RFP in a subcutaneous pouch in a rat model. We detected the RFP in bone and implanted NC scaffolds even after day 28 and the concentration was still higher than the minimal inhibitory concentration of RFP when it was implanted with NC in an abdominal subcutaneous pouch. Moreover, we also observed the accumulation of RFP in bone and NC when administered orally, showing strong binding between RFP and nHAP. Additionally, we generated an osteomyelitis bone infection model in the rat tibia using Staphylococcus aureus as an infective agent to evaluate the antibacterial and osteogenic efficiency of RFP containing NC as a delivery system. S. aureus mediated implant infection is a major problem in orthopedics. The results suggested that NC loaded with RFP could eradicate the pathogen completely in the bone nidus. Further, defect healing and bone formation were also evaluated by micro-CT and histological analysis demonstrating proper trabecular-type bone formation at the debridement site and complete healing of the defect when NC + RFP was implanted. Our findings provide an insight into the use of an nHAP based ceramic matrix as a carrier of rifampicin to eradicate the bone infection and simultaneously promote bone healing at the bone nidus.


Assuntos
Osteomielite , Rifampina , Animais , Cerâmica , Humanos , Osteomielite/tratamento farmacológico , Ratos , Staphylococcus aureus , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
12.
Sci Rep ; 10(1): 14128, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839480

RESUMO

Long term multiple systemic antibiotics form the cornerstone in the treatment of bone and joint tuberculosis, often combined with local surgical eradication. Implanted carriers for local drug delivery have recently been introduced to overcome some of the limitations associated with conventional treatment strategies. In this study, we used a calcium sulphate hemihydrate (CSH)/nanohydroxyapatite (nHAP) based nanocement (NC) biomaterial as a void filler as well as a local delivery carrier of two standard of care tuberculosis drugs, Rifampicin (RFP) and Isoniazid (INH). We observed that the antibiotics showed different release patterns where INH showed a burst release of 67% and 100% release alone and in combination within one week, respectively whereas RFP showed sustained release of 42% and 49% release alone and in combination over a period of 12 weeks, respectively indicating different possible interactions of antibiotics with nHAP. The interactions were studied using computational methodology, which showed that the binding energy of nHAP with RFP was 148 kcal/mol and INH was 11 kcal/mol, thus varying substantially resulting in RFP being retained in the nHAP matrix. Our findings suggest that a biphasic ceramic based drug delivery system could be a promising treatment alternative to bone and joint TB.


Assuntos
Antituberculosos/farmacologia , Sulfato de Cálcio/farmacologia , Portadores de Fármacos/farmacologia , Durapatita/farmacologia , Isoniazida/farmacologia , Rifampina/farmacologia , Tuberculose Osteoarticular/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Regeneração Óssea/efeitos dos fármacos , Biologia Computacional , Preparações de Ação Retardada/farmacologia , Interações Medicamentosas , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos
13.
Biomed Mater ; 15(5): 055015, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32272467

RESUMO

Withania somnifera (ashwagandha) is used in Indian traditional medicine for its various health benefits. Withaferin-A, a steroidal lactone present in this herb, has shown proteosomal inhibition-based enhancement of bone mineralization. In the present work, chitosan microparticles blended with total methanolic root extract of W. somnifera were incorporated as a porogen in calcium phosphate-based hydroxyapatite bone filler. The controlled release of bioactive molecules enabled enhanced proliferation and differentiation of pre-osteoblasts. Microparticle percentages were optimized to have a minimum effect on the setting time, mechanical strength and degradability of hydroxyapatite bone filler. In vitro cell adhesion, proliferation and differentiation were evaluated to determine the biocompatibility of the composites. On the basis of the desirable results obtained, we provide a preliminary rationale for the use of methanolic extract-blended chitosan microparticle-impregnated calcium phosphate filler for enhanced bone regeneration.


Assuntos
Substitutos Ósseos , Osso e Ossos/efeitos dos fármacos , Cerâmica/química , Hidroxiapatitas/química , Células 3T3 , Animais , Cimentos Ósseos , Regeneração Óssea , Calcificação Fisiológica , Fosfatos de Cálcio/química , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Quitosana/química , Durapatita/química , Humanos , Técnicas In Vitro , Metanol/química , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos/metabolismo , Tamanho da Partícula , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Withania
14.
Tissue Eng Part A ; 26(19-20): 1042-1051, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32242474

RESUMO

Osteoporosis often leads to fragility fractures of the hip, resulting in impaired quality of life and increased mortality. Augmenting the proximal femur could be an attractive option for prevention of fracture or fixation device failure. We describe a tissue engineering based strategy to enhance long-term bone formation in the femoral neck of osteoporotic rats by locally delivering bioactive molecules; recombinant human bone morphogenic protein-2 (rhBMP-2), and zoledronic acid (ZA) by using a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial. A defect was created by reaming the femoral neck canal of osteoporotic (OVX) rats and they were treated as follows: G1. Empty, G2. CaS/HA, G3. CaS/HA+Systemic ZA, G4. CaS/HA+Local ZA, and G5. CaS/HA+Local ZA+rhBMP-2. Bone formation was evaluated 6 months after treatment. Further, radioactively labeled 14C-ZA was used to study the bioavailability of ZA at the defect location, which was determined by using scintillation counting. Micro-CT indicated significantly higher bone volume in groups G4 and G5 compared with the other treatment groups. This was confirmed qualitatively by histological assessment. Addition of rhBMP-2 gave no additional benefit in this model. Local delivery of ZA performed better than systemic administration of ZA. Mechanical testing showed no differences between the groups, likely reflecting that the addition of bioactive molecules had limited effect on cortical bone or the choice of mechanical testing setup was not optimal. Scintillation counting revealed higher amounts of 14C-ZA present in the treated leg of G4 compared with its contralateral control and compared with G3, indicating that local ZA delivery can be used to achieve high local concentrations without causing a systemic effect. This long-term study shows that local delivery of ZA using a CaS/HA carrier can regenerate cancellous bone in the femoral neck canal and has clear implications for enhancing implant integration and fixation in fragile bone.


Assuntos
Materiais Biocompatíveis , Colo do Fêmur , Osteoporose/terapia , Engenharia Tecidual , Ácido Zoledrônico , Animais , Proteína Morfogenética Óssea 2/uso terapêutico , Sulfato de Cálcio , Durapatita , Humanos , Ratos , Proteínas Recombinantes/uso terapêutico , Ácido Zoledrônico/farmacologia
15.
Biomed Pharmacother ; 130: 110754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34321168

RESUMO

Bone injuries occur due to various traumatic and disease conditions. Healing of bone injury occurs via a multi-stage intricate process. Body has the potential to rectify most of the bone injuries but some severe traumatic cases with critical size defects may require interventions. Autografts are still considered the "gold standard" for fracture healing but due to limitations associated with it, new alternatives are warranted. The field of orthobiologics has provided novel approaches using scaffolds, bioactive molecules, stem cells for the treatment of bone defects. Phyto-bioactives have been widely used in alternative medicine and folklore practices for curing bone ailments. It is believed that different bioactive constituents in plants work synergistically to give the therapeutic efficacy. Bioactives in plants extracts act upon different signal transduction pathways aiding in bone healing. The present review focuses on the use, chemical composition, mode of delivery, mechanism of action, and possible future strategies of three medicinal plants popularly used in traditional medicine for bone healing: Cissus quadrangularis, Withania somnifera and Tinospora cordifolia. Plants extracts seem to be a natural and non-toxic therapeutic alternative in treating bone injuries. Most of the studies on bone healing for these plants have reported oral administration of the extracts and presented them as a safe alternative without any side effects despite giving higher doses. Forthcoming studies could be directed towards the local delivery of extracts at the defect site. Unification of herbal extracts and orthobiologics could be an interesting direction in the field of bone healing in future. The present review intends to provide a bird's eye view of different strategies used in bone healing, mechanisms involved and future direction of advancements using phytobioactives and orthobiologics.


Assuntos
Regeneração Óssea , Medicina Tradicional , Extratos Vegetais/uso terapêutico , Animais , Biomarcadores , Fraturas Ósseas/etiologia , Fraturas Ósseas/metabolismo , Fraturas Ósseas/terapia , Humanos , Medicina Tradicional/métodos , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
16.
Biomacromolecules ; 21(2): 328-337, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31637919

RESUMO

Hip fractures are among the most common types of fracture risks in old age osteoporotic patients that often end up with immobile disabilities. Weak bones due to loss of mineral content along with an increase in the porosity of the femur neck canal in osteoporosis reduce the mechanical properties of the bone and predispose the patients to fractures. In this study, we have used calcium sulfate/nanohydroxyapatite based nanocement (NC) as carrier of recombinant human bone morphogenetic protein-2 (BMP-2), zoledronate (ZA), and bone marrow mesenchymal stromal cells (MSCs) derived exosomes (EXO) to enhance bone formation and defect healing in a femur neck canal defect model in osteoporotic rats. A cylindrical defect in the femur neck canal with dimensions of 1 mm (diameter) × 8 mm (length) starting from the lateral cortex toward the apex of the femur head was developed. The defect was impacted using NC alone or functionalized as (a) NC + ZA (systemic), (b) NC + ZA (local), (c) NC + EXO + ZA, and (d) NC + BMP + ZA to evaluate bone formation by ex vivo micro-computed tomography (micro-CT) and histological analysis 16 weeks postsurgery. Moreover, the femurs (both defect and contralateral leg) were subjected to biomechanical analysis to assess the effect of treatments on compressive mechanical properties of the bones. The treatment groups (NC + ZA (L), NC + BMP + ZA, and NC + EXO + ZA) showed enhanced bone formation with complete healing of the defect. No differences in the mechanical properties of both the defect and contralateral across the leg were observed among the groups. However, a trend was observed where NC + BMP + ZA showed enhanced biomechanical strength in the defect leg. This suggests that NC could act as a potent carrier of bioactive molecules to reduce the risks of hip fractures in osteoporotic animals. This type of treatment can be given to patients who are at higher risk of osteoporosis mediated femur neck fracture as a preventive measure or for enhanced healing in already compromised situations. Moreover, this study provided a proof of concept regarding the use of exosomes in bone regeneration therapy, which might be used as a booster dose that will eventually reduce the dosage of BMP and hence circumvent the limitations associated with the use of BMP.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Colo do Fêmur/lesões , Hidroxiapatitas/química , Osteogênese/efeitos dos fármacos , Osteoporose/fisiopatologia , Fator de Crescimento Transformador beta/administração & dosagem , Animais , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/farmacologia , Regeneração Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Sulfato de Cálcio/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Exossomos/metabolismo , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/efeitos dos fármacos , Colo do Fêmur/patologia , Fraturas do Quadril/fisiopatologia , Hidroxiapatitas/administração & dosagem , Nanoestruturas/química , Osteogênese/fisiologia , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Microtomografia por Raio-X , Ácido Zoledrônico/administração & dosagem , Ácido Zoledrônico/farmacologia
17.
ACS Biomater Sci Eng ; 5(1): 56-69, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33405880

RESUMO

Polymer (acrylate) and ceramic bone cements are extensively used as bone void fillers and for implant fixation in orthopedics. These materials have micro- to nonporous architectures. Postimplantation, they may cause hypoxic and exothermic injuries to already compromised damage site. These materials also have limited interaction with surrounding tissue. In this work we have developed composite collagen-nanohydroxyapatite (CS) bone filler, mimicking porous architecture of trabecular bone. It was functionalized with clinically available bone active agents like bone morphogenetic protein-2 (rhBMP-2) and zoledronic acid (ZA). We investigated synergistic effects of the bone active molecules and endogenous platelet rich plasma (PRP), a source of growth factors on mineralization. Porous CS and collagen/gelatin/chiotosan polymer scaffold (SC) (without nanohydroxyapatite) were synthesized using cryogelation. PRP (10 µL) (∼5 × 106 cells), rhBMP-2 (5 µg) and ZA (10 µg) were used to functionalize scaffolds. Bone formation was evaluated at ectopic sites in abdominal pouch and 4.0 mm critical defect in tibia metaphysis of rats. Tissue mineralization was evaluated by micro-CT and histological analysis 12 weeks postimplantation. In vitro cell based studies revealed, PRP functionalization enhances osteoblast proliferation and activity on scaffolds. In vivo BMP+ZA+PRP functionalized scaffolds had higher amount (28 mm3) of mineralized tissue formation as compared to empty defect (20 mm3), suggesting that PRP can augment the osteoinductive properties of functionalized scaffolds both in vitro and in vivo. Enhanced cell infiltration and mineralization can be achieved via CS in comparison to SC, implying their use as porous bone void fillers and substitutes for autografts.

18.
Biomaterials ; 188: 38-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321863

RESUMO

A metaphyseal bone defect due to infection, tumor or fracture leads to loss of cancellous and cortical bone. An animal model separating the cancellous and cortical healing was used with a combination of a macroporous gelatin-calcium sulphate-hydroxyapatite (Gel-CaS-HA) biomaterial as a cancellous defect filler, and a thin collagen membrane (CM) guiding cortical bone regeneration. The membrane was immobilized with bone morphogenic protein-2 (rhBMP-2) to enhance the osteoinductive properties. The Gel-CaS-HA cancellous defect filler contained both rhBMP-2 and a bisphosphonate, (zoledronate = ZA) to prevent premature callus resorption induced by the pro-osteoclast effect of rhBMP-2 alone. In the first part of the study, the CM delivering both rhBMP-2 and ZA was tested in a muscle pouch model in rats and the co-delivery of rhBMP-2 and ZA via the CM resulted in higher amounts of bone compared to rhBMP-2 alone. Secondly, an established tibia defect model in rats was used to study cortical and cancellous bone regeneration. The defect was left empty, filled with Gel-CaS-HA alone, Gel-CaS-HA immobilized with ZA or Gel-CaS-HA immobilized with rhBMP-2+ZA. Functionalization of the Gel-CaS-HA scaffold with bioactive molecules produced significantly more bone in the cancellous defect and its surroundings but cortical defect healing was delayed likely due to the protrusion of the Gel-CaS-HA into the cortical bone. To guide cortical regeneration, the cortical defect was sealed endosteally by a CM with or without rhBMP-2. Subsequently, the cancellous defect was filled with Gel-CaS-HA containing ZA and rhBMP-2+ZA. In the groups where the CM was doped with rhBMP-2, significantly higher number of cortices bridged. The approach to guide cancellous as well as cortical bone regeneration separately in a metaphyseal defect using two bioactive molecule immobilized biomaterials is promising and could improve the clinical care of patients with metaphyseal defects.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Regeneração Óssea/efeitos dos fármacos , Colágeno/uso terapêutico , Durapatita/uso terapêutico , Gelatina/uso terapêutico , Engenharia Tecidual/métodos , Animais , Conservadores da Densidade Óssea/uso terapêutico , Proteína Morfogenética Óssea 2/uso terapêutico , Sulfato de Cálcio/uso terapêutico , Sistemas de Liberação de Medicamentos , Masculino , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/uso terapêutico , Ácido Zoledrônico/uso terapêutico
19.
ACS Appl Mater Interfaces ; 10(50): 43327-43342, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30460837

RESUMO

Repair and regeneration of critically injured peripheral nerves is one of the most challenging reconstructive surgeries. Currently available and FDA approved nerve guidance channels (NGCs) are suitable for small gap injuries, and their biological performance is inferior to that of autografts. Development of biomimetic NGCs with clinically relevant geometrical and biological characteristics such as topographical, biochemical, and haptotactic cues could offer better regeneration of the long-gap complex nerve injuries. Here, in this study, we present the development and preclinical analysis of three-dimensional (3D) printed aligned cryomatrix-filled NGCs along with nerve growth factor (NGF) (aCG + NGF) for peripheral nerve regeneration. We demonstrated the application of these aCG + NGF NGCs in the enhanced and successful regeneration of a critically injured rat sciatic nerve in comparison to random cryogel-filled NGCs, multichannel and clinically preferred hollow conduits, and the gold standard autografts. Our results indicated similar effect of the aCG + NGF NGCs viz-a-viz that of the autografts, and they not only enhanced the overall regenerated nerve physiology but could also mimic the cellular aspects of regeneration. This study emphasizes the paradigm that these biomimetic 3D printed NGCs will lead to a better functional regenerative outcome under clinical settings.


Assuntos
Materiais Biomiméticos , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Impressão Tridimensional , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Matriz Extracelular/química , Feminino , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA