Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202400474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38590031

RESUMO

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the "preferred" polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.

2.
Sci Adv ; 9(13): eadf5087, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000883

RESUMO

Achieving percolation pathways in a metal-organic framework (MOF)-based mixed matrix membrane (MMM) without compromising its mechanical properties is challenging. We developed phase separated (PS)-MMMs with an interconnected MOF domain running across the whole membrane. Through demixing two immiscible polyimides, the MOF particles were selectively partitioned into one of the preferred polymer domains at over 50 volume % local packing density, leading to a percolated network at only 19 weight % MOF loading. The CO2 permeability of this PS-MMM is 6.6 times that of the pure polymer membrane, while the CO2/N2 and CO2/CH4 selectivity remain largely unchanged. Meanwhile, benefiting from its unique co-continuous morphology, the PS-MMM also exhibited markedly improved membrane ductility compared to the conventional MMM at similar MOF loading. PS-MMMs offer a practical solution to simultaneously achieve high membrane permeability and good mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA