Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 86(5): 2665-2670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694312

RESUMO

Background: The current dilemma of osteosarcoma treatment is the resistance of chemotherapeutic drugs after long-term usage, which also introduces life-threatening side effects. Methods and results: To minimize chemoresistance in osteosarcoma patients, the authors applied shock waves (SWs) to human osteosarcoma MNNG/HOS cells, then evaluated the cell viability and extracellular ATP levels, and further investigated the effect of SWs on cisplatin (DDP) cytotoxicity in MNNG/HOS cells. The authors' results showed that 400 SW pulses at 0.21 mJ/mm2 exhibited little influence on the MNNG/HOS cell viability. In addition, this SW condition significantly promoted the extracellular ATP release in MNNG/HOS cells. Importantly, low-energy SWs obviously increased Akt and mammalian target of rapamycin (mTOR) phosphorylation and activation in MNNG/HOS cells, which could be partially reversed in the presence of P2X7 siRNA. The authors also found that low-energy SWs strongly increased the DDP sensitivity of MNNG/HOS cells in the absence of P2X7. Conclusions: For the first time, the authors found that SW therapy reduced the DDP resistance of MNNG/HOS osteosarcoma cells when the ATP receptor P2X7 was downregulated. SW therapy may provide a novel treatment strategy for chemoresistant human osteosarcoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA