Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34887934

RESUMO

MATERIALS AND METHODS: This review is a collection of all possible studies on AR, published in scientific journals, papers, and books. Using the papers related to Arisaematis, such as ScienceDirect, Wiley Online Library, Springer Link, Web of Science, CNKI, and WanFang Database. In this paper, the traditional uses, botany, phytochemistry, pharmacology, and toxicology of AR were reviewed. Finally, the existing problems and research directions of the research on AR are discussed. RESULTS: Ninety-eight chemical constituents were isolated from AR. AR has a wide range of pharmacological effects, such as the effects on the central nervous system and cardiovascular system. It also has anti-tumor, sedative, analgesic, anticonvulsant, anti-inflammatory, expectorant, antiarrhythmic, anticoagulant, and other effects. It is also considered an effective drug for in vitro and in vivo validation. CONCLUSIONS: AR is an excellent traditional medicinal plant in China. Pharmacological studies support the traditional use of AR and may verify the folk use of AR in the treatment of different diseases. The anti-tumor effect of AR has been widely concerned by scholars at home and abroad. It has become a hot spot in recent years and has made great contributions to the survival and development of human beings. Although it has a high value of comprehensive utilization, its development and utilization are far from enough. Therefore, the comprehensive development of AR is worthy of further analysis.

2.
Dalton Trans ; (5): 996-1001, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15726156

RESUMO

N-Trimethylsilyl o-methylphenyldiphenylphosphinimine, (o-MeC6H4)PPh2=NSiMe3 (1), was prepared by reaction of Ph2P(Br)=NSiMe3 with o-methylphenyllithium. Treatment of 1 with LiBun and then Me3SiCl afforded (o-Me3SiCH2C6H4)PPh2=NSiMe3 (2). Lithiations of both 1 and 2 with LiBu(n) in the presence of tmen gave crystalline lithium complexes [Li{CH(R)C6H4(PPh(2=NSiMe3)-.tmen](3, R = H; 4, R = SiMe3). From the mother liquor of 4, traces of the tmen-bridged complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}]2(mu-tmen) (5) were obtained. Reaction of 2 with LiBun in Et2O yielded complex [Li{CH(SiMe3)C6H4(PPh2=NSiMe3)-2}.OEt2] (6). Reaction of lithiated with Me2SiCl2 in a 2:1 molar ratio afforded dimethylsilyl-bridged compound Me2Si[CH2C6H4(PPh2=NSiMe3)-2]2 (7). Lithiation of 7 with two equivalents of LiBun in Et2O yielded [Li2{(CHC6H4(PPh2=NSiMe3)-2)2SiMe2}.0.5OEt2](8.0.5OEt2). Treatment of 4 with PhCN formed a lithium enamide complex [Li{N(SiMe3)C(Ph)CHC6H4(PPh2=NSiMe3)-2}.tmen] (9). Reaction of two equivalents of 5 with 1,4-dicyanobenzene gave a dilithium complex [{Li(OEt2)2}2(1,4-{C(N(SiMe3)CHC6H4(PPh2=NSiMe3)-2}2C6H4)] (10). All compounds were characterised by NMR spectroscopy and elemental analyses. The structures of compounds 2, 3, 5, 6 and 9 have been determined by single crystal X-ray diffraction techniques.


Assuntos
Lítio/química , Silício/química , Compostos de Trimetilsilil/química , Compostos de Trimetilsilil/síntese química , Elementos Químicos , Iminas/química , Ligantes , Espectroscopia de Ressonância Magnética , Ácidos Fosfínicos/química , Compostos de Trimetilsilil/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA