Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10776-10785, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838101

RESUMO

Rivers have been recognized as the primary conveyors of microplastics to the oceans, and seaward transport flux of riverine microplastics is an issue of global attention. However, there is a significant discrepancy in how microplastic concentration is expressed in field occurrence investigations (number concentration) and in mass flux (mass concentration). Of urgent need is to establish efficient conversion models to correlate these two important paradigms. Here, we first established an abundant environmental microplastic dataset and then employed a deep neural residual network (ResNet50) to successfully separate microplastics into fiber, fragment, and pellet shapes with 92.67% accuracy. We also used the circularity (C) parameter to represent the surface shape alteration of pellet-shaped microplastics, which always have a more uneven surface than other shapes. Furthermore, we added thickness information to two-dimensional images, which has been ignored by most prior research because labor-intensive processes were required. Eventually, a set of accurate models for microplastic mass conversion was developed, with absolute estimation errors of 7.1, 3.1, 0.2, and 0.9% for pellet (0.50 ≤ C < 0.75), pellet (0.75 ≤ C ≤ 1.00), fiber, and fragment microplastics, respectively; environmental samples have validated that this set is significantly faster (saves ∼2 h/100 MPs) and less biased (7-fold lower estimation errors) compared to previous empirical models.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA