Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339176

RESUMO

Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-ß) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.


Assuntos
Proteínas Hedgehog , Mytilus , Animais , Proteínas Hedgehog/genética , Mytilus/genética , Larva/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Fator de Crescimento Transformador beta/genética
2.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110106

RESUMO

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Assuntos
Mytilus , Vibrioses , Vibrio , Animais , Mytilus/genética , Vibrio alginolyticus/fisiologia , Antioxidantes , Vibrioses/veterinária , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069123

RESUMO

The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.


Assuntos
Antioxidantes , Bivalves , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Bivalves/genética , RNA Interferente Pequeno/metabolismo , Mamíferos/metabolismo
4.
Aquat Toxicol ; 264: 106728, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837868

RESUMO

Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Moluscos/metabolismo , Apoptose , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Front Physiol ; 14: 1282900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869713

RESUMO

NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory process, which could trigger hundreds of antioxidant elements to confront xenobiotics. In the previous study, we identified Nrf2 from the marine mussel Mytilus coruscus, and the findings demonstrated that McNrf2 effectively protected the mussels against oxidative stress induced by benzopyrene (Bap). In order to delve deeper into the underlying mechanism, we utilized Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) technology to systematically identify potential novel target genes of McNrf2. A total of 3,465 potential target genes were screened, of which 219 owned binding sites located within the promoter region. During subsequent experimental verification, it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited negative regulation by McNrf2, as confirmed through dual luciferase and qRT-PCR detection. Further, the enzyme activity tests demonstrated that McNrf2 could counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current study provides valuable insights into the application of ChIP-seq technology in the research of marine mollusks, advancing our understanding of the key role of Nrf2 in antioxidant defense mechanisms, and highlighting the significance of SLC35E2 in the highly sophisticated regulation of oxidative stress response in marine invertebrates.

6.
Fish Shellfish Immunol ; 142: 109112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751644

RESUMO

The Nuclear factor Erythroid 2-related factor 2 (Nrf2) is the most important endogenous antioxidant factor in organisms, and it has been demonstrated that it exerts extensive control over the immune response by interacting with crucial innate immunity components directly or indirectly. Although Nrf2 has been widely confirmed to be involved in stress resistance in mammals and some fish, its contribution to mollusks oxidative stress resistance has not frequently been documented. In this investigation, total RNA was taken from the digestive gland of M. coruscus, and a cDNA library was constructed and screened using the GATEWAY recombination technology. The Nrf2 cDNA sequence of M. coruscus was cloned into the pGBKT7 vector to prepare the bait plasmid. Using yeast two-hybrid system, after auxotrophic medium screening, sequencing, and bioinformatics analysis, 13 binding proteins that interacted with Nrf2 were finally identified. They were QM-like protein, 40S ribosomal protein S4 (RPS4), ribosomal protein S2 (RPS2), ribosomal protein L12 (RPL12), EF1-alpha mRNA for elongation factor 1 alpha (eEF1-alpha), ferritin, alpha-amylase, trypsin, vdg3, period clock protein, cyclophilin A isoform 1 (CYP A), serine protease CFSP2, histone variant H2A.Z (H2A.Z). For a better understanding the physiological function of Nrf2 in animals and as a potential target for future research on protein roles in Nrf2 interactions, it is crucial to clarify these protein interactions.


Assuntos
Mytilus , Fator 2 Relacionado a NF-E2 , Animais , Técnicas do Sistema de Duplo-Híbrido , Fator 2 Relacionado a NF-E2/genética , Mytilus/genética , Biblioteca Gênica , DNA Complementar/genética , Mamíferos
7.
Animals (Basel) ; 13(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508026

RESUMO

Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks.

8.
Toxics ; 11(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37505520

RESUMO

In recent years, microplastics have been of great concern in environmental and health research. In field surgeries and laboratory investigations, research interests were focused on the retention of microplastics inside of animals by ingestion and the series of negative effects after that. However, such large plastic debris and filaments are hardly eaten by small animals, like zooplankton, planktonic larvae, etc. In this study, the surface contact between plastic filaments contaminated with polycyclic aromatic hydrocarbons (PAHs) and mussel pediveliger larvae has been investigated to figure out the effects of "non-digestive tract route of exposure" on subject animals. In a 1600 mL artificial seawater medium, high mortalities of mussel larvae were recorded after being exposed to two PAHs-contaminated (benzo[α]pyrene (BaP) and phenanthrene (Phe)) filaments for 5 days, 68.63% for BaP and 56.45% for Phe on average. We suggest that the surface contact was the dominant pathway to transfer PAHs from contaminated filaments to larvae and that the risk of contaminated plastic ropes transferring hydrophobic organic compounds (HOCs) to larvae in mussel aquaculture should be taken seriously.

9.
Sci Total Environ ; 903: 165785, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499827

RESUMO

The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.

10.
Fish Shellfish Immunol ; 138: 108868, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263550

RESUMO

Toll-like receptors (TLRs) are crucial players in immune recognition and regulation, with aberrant activation leading to autoimmune, chronic inflammatory, and infectious diseases. MicroRNAs (miRNAs) have been shown to regulate gene expression at transcriptional and post-transcriptional levels. While miRNA-mediated regulation of TLR signaling has been studied in mammals, the underlying mechanisms of TLR-miRNA interactions in molluscs remain unclear. In a previous study, one of the TLR genes potentially targeted by miRNAs was identified and named McTLR-like1. McTLR-like1 was later found to be targeted by miRNA Mc-novel_miR_196 through bioinformatic prediction. In this study, we aim to experimentally determine the interaction between McTLR-like1 and Mc-novel_miR_196, as well as their functional role in the innate immune response of molluscs. The results showed that the expression of Mc-novel_miR_196 was suppressed, while the expression of McTLR-like1 was enhanced in M. coruscus hemocytes treated with lipopolysaccharide (LPS). Moreover, in vitro assays demonstrated that Mc-novel_miR_196 directly targets the 5' UTR of McTLR-like1 and leads to the down-regulation of proinflammatory cytokines in hemocytes. In addition, co-transfection experiments confirmed that Mc-novel_miR_196 inhibits McTLR-like1 and inhibits the expression of proinflammatory cytokines. The Tunel assay also showed that Mc-novel_miR_196 inhibited apoptosis in hemocytes induced by LPS. Our findings suggest that microRNA Mc-novel_miR_196 acts as a regulator of innate immunity in M. coruscus by targeting McTLR-like1 and inhibiting inflammatory response and apoptosis. These results provide further insights into the complex molecular mechanisms underlying TLR signaling in molluscs.


Assuntos
MicroRNAs , Mytilus , Animais , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Imunidade Inata/genética , Citocinas , Apoptose , Mamíferos
11.
Front Physiol ; 14: 1150521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064882

RESUMO

Mytilus coruscus is a dominant shellfish in the Yangtze estuary and its adjacent sea area. Food deprivation often occurs during their growth due to fluctuations in algal abundance caused by seasonal freshwater flushing and high-density aquaculture mode. To investigate the coping strategies of M. coruscus to starvation stress, electron microscopy and differential proteomic analysis were performed on the critical feeding organ gill of the mussels after 9 days of starvation. The electron microscopy results showed that the cilia of the mussel gills were dissolved, and the gaps between gill filaments widened under starvation. Differential proteomic analysis revealed that phagocytosis-related proteins such as ATPeV1E, ATPeV1C, LAMP1_2 and CTSL were significantly upregulated, and the phagocytosis pathway was significantly enriched (p < 0.05). In addition, the corin content in gill and myeloperoxidase level as well as the number of dead cells in blood were both significantly increased (p < 0.05). What's more, proteomic data suggested that immune maintenance, cellular transport and metabolism related pathways were significantly enriched, which illustrated an immune and metabolism responses under starvation. This study reveals for the first time that phagocytosis functions as an essential strategy for M. coruscus to cope with starvation, which provides new scientific knowledge and a theoretical basis for understanding the adaptation mechanisms of mussel to starvation and for rational optimization of mussel culture patterns.

12.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983002

RESUMO

Interleukin-17 (IL-17) represents a class of proinflammatory cytokines involved in chronic inflammatory and degenerative disorders. Prior to this study, it was predicted that an IL-17 homolog could be targeted by Mc-novel_miR_145 to participate in the immune response of Mytilus coruscus. This study employed a variety of molecular and cell biology research methods to explore the association between Mc-novel_miR_145 and IL-17 homolog and their immunomodulatory effects. The bioinformatics prediction confirmed the affiliation of the IL-17 homolog with the mussel IL-17 family, followed by quantitative real-time PCR assays (qPCR) to demonstrate that McIL-17-3 was highly expressed in immune-associated tissues and responded to bacterial challenges. Results from luciferase reporter assays confirmed the potential of McIL-17-3 to activate downstream NF-κb and its targeting by Mc-novel_miR_145 in HEK293 cells. The study also produced McIL-17-3 antiserum and found that Mc-novel_miR_145 negatively regulates McIL-17-3 via western blotting and qPCR assays. Furthermore, flow cytometry analysis indicated that Mc-novel_miR_145 negatively regulated McIL-17-3 to alleviate LPS-induced apoptosis. Collectively, the current results showed that McIL-17-3 played an important role in molluscan immune defense against bacterial attack. Furthermore, McIL-17-3 was negatively regulated by Mc-novel_miR_145 to participate in LPS-induced apoptosis. Our findings provide new insights into noncoding RNA regulation in invertebrate models.


Assuntos
MicroRNAs , Mytilus , Humanos , Animais , Interleucina-17/genética , Lipopolissacarídeos/farmacologia , Células HEK293 , NF-kappa B , MicroRNAs/genética , Imunidade Inata/genética , Apoptose/genética
13.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838794

RESUMO

The inflammatory cytokine interleukin-17 (IL17) plays an important role in innate immunity by binding to its receptors (IL17Rs) to activate immune defense signals. To date, information on members of the IL17 family is still very limited in molluscan species. Here, a novel member of the IL17 family was identified and characterized from thick shell mussel Mytilus coruscus, and this gene was designated as McIL17-1 by predicting structural domains and phylogenetic analysis. McIL17-1 transcripts existed in all examined tissues with high expression levels in gills, hemocytes and digestive glands. After the stimuli of different pathogen associated molecular patterns (PAMPs) for 72 h, transcriptional expression of McIL17-1 was significantly upregulated, except for poly I:C stimulation. Cytoplasm localization of McIL17-1 was shown in HEK293T cells by fluorescence microscopy. Further, in vivo and in vitro assays were performed to evaluate the potential function of McIL17-1 played in immune response. McIL17-1 was either knocked down or overexpressed in vivo through RNA inference (RNAi) and recombinant protein injection, respectively. With the infection of living Vibrio alginolyticus, a high mortality rate was exhibited in the McIL17-1 overexpressed group compared to the control group, while a lower mortality rate was observed in the McIL17-1 knocked down group than control group. In vitro, the flow cytometric analysis showed that the apoptosis rate of McIL17-1 inhibited hemocytes was significantly lower than that of the control group after lipopolysaccharide stimulation. These results collectively suggested that the newly identified IL17 isoform is involved in the inflammatory response to bacterial infection in M. coruscus.


Assuntos
Mytilus , Humanos , Animais , Mytilus/metabolismo , Filogenia , Interleucina-17/metabolismo , Células HEK293 , Isoformas de Proteínas/metabolismo , Imunidade Inata/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-36731219

RESUMO

As a result of global warming, the Mytilus coruscus living attached in the intertidal zone experience extreme and fluctuating changes in temperature, and extreme temperature changes are causing mass mortality of intertidal species. This study explores the transcriptional response of M. coruscus at different temperatures (18 °C, 26 °C, and 33 °C) and different times (0, 12, and 24 h) of action by analyzing the potential temperature of the intertidal zone. In response to high temperatures, several signaling pathways in M. coruscus, ribosome, endocytosis, endoplasmic reticulum stress, protein degradation, and lysosomes, interact to counter the adverse effects of high temperatures on protein homeostasis. Increased expression of key genes, including heat shock proteins (Hsp70, Hsp20, and Hsp110), Lysosome-associated membrane glycoprotein (LAMP), endoplasmic reticulum chaperone (BiP), and baculoviral IAP repeat-containing protein 7 (BIRC7), may further mitigate the effects of heat stress and delay mortality in M. coruscus. These results reveal changes in multiple signaling pathways involved in protein degradation during high-temperature stress, which will contribute to our overall understanding of the molecular mechanisms underlying the response of M. coruscus to high-temperature stress.


Assuntos
Mytilus , Animais , Mytilus/genética , Temperatura , Transcriptoma , Proteólise , Transdução de Sinais
15.
Aquat Toxicol ; 254: 106367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436309

RESUMO

Plastic pollution represents one of the most severe marine environmental issues today. In the present study, mussel Mytilus coruscus, was selected as the model organism to probe the toxic effects of acute exposure to different sizes of plastic particles using integrated transcriptomic techniques and histological and biochemical analysis. Nanoplastics (NPs) were efficiently ingested by mussels, thereby inducing a severe inflammatory response. Although no distinct aggregation of microplastics (MPs) was observed, a slight inflammatory response has still occurred. Biochemical analysis revealed a significant up-regulation of biomarkers after exposure to plastic particles. Further, NPs caused more ROS production and higher T-AOC level than MPs. Transcriptomic sequencing was performed, and these differentially expressed genes after MNPs exposure were mostly enriched in pathways involved in stress and immune response. Notably, a contrast expression, substantial upregulation in MPs treatment and downregulation in NPs treatment of specific genes include in these pathways were revealed. Collectively, these results indicated that acute exposure to NPs is more toxic than MPs. Additionally, MPs exposure perhaps caused the impairment of olfactory function and neurotoxicity to mussels. These data provided some new clues for the elucidating of ecotoxicological mechanisms underlying plastic particles exposure.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Plásticos , Transcriptoma
16.
Fish Shellfish Immunol ; 131: 817-826, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36349653

RESUMO

In this study, seven transcripts representing a novel antimicrobial peptide (AMP) family with structural features similar to those of arthropod defensins were identified from Mytilus coruscus. These novel defensins from the Mytilus AMP family were named myticofensins. To explore the possible immune-related functions of these myticofensins, we examined their expression profiles in different tissues and larval stages, as well as in three immune-related tissues under the threat of different microbes. Our data revealed that the seven myticofensins had relatively high expression levels in immune-related tissues. Most myticofensins were undetectable, or had low expression levels, in different larval mussel stages. Additionally, in vivo microbial challenges significantly increased the expression levels of myticofensins in M. coruscus hemocytes, gills, and digestive glands, showing different immune response patterns under challenges from different microbes. Our data indicates that different myticofensins may have different immune functions in different tissues. Furthermore, peptide sequences corresponding to the beta-hairpin, alpha-helix, and N-terminal loop of myticofensin were synthesized and the antimicrobial activities of these peptide fragments were tested. Our data confirms the diversity of defensins in Mytilus and reports the complex regulation of these defensins in the mussel immune response to different microbes in immune-related tissues. The immune system of Mytilus has been studied for years as they are a species with strong environmental adaptations. Our data can be regarded as a step forward in the study of the adaptation of Mytilus spp. to an evolving microbial world.


Assuntos
Mytilus , Animais , Peptídeos Antimicrobianos , Defensinas/genética , Defensinas/metabolismo , Hemócitos , Larva
17.
Fish Shellfish Immunol ; 131: 612-623, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272520

RESUMO

Mytilus shows great immune resistance to various bacteria from the living waters, indicating a complex immune recognition mechanism against various microbes. Peptidoglycan recognition proteins (PGRPs) play an important role in the defense against invading microbes via the recognition of the immunogenic substance peptidoglycan (PGN). Therefore, eight PGRPs were identified from the gill transcriptome of Mytilus coruscus. The sequence features, expression pattern in various organs and larval development stages, and microbes induced expression profiles of these Mytilus PGRPs were determined. Our data revealed the constitutive expression of PGRPs in various organs with relative higher expression level in immune-related organs. The expression of PGRPs is developmentally regulated, and most PGRPs are undetectable in larvae stages. The expression level of most PGRPs was significantly increased with in vivo microbial challenges, showing strong response to Gram-positive strain in gill and digestive gland, strong response to Gram-negative strain in hemocytes, and relative weaker response to fungus in the three tested organs. In addition, the function analysis of the representative recombinant expressed PGRP (rMcPGRP-2) confirmed the antimicrobial and agglutination activities, showing the immune-related importance of PGRP in Mytilus. Our work suggests that Mytilus PGRPs can act as pattern recognition receptors to recognize the invading microorganisms and the antimicrobial effectors during the innate immune response of Mytilus.


Assuntos
Mytilus , Animais , Proteínas de Transporte , Peptidoglicano/farmacologia , Peptidoglicano/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata/genética
18.
Dev Comp Immunol ; 131: 104373, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181373

RESUMO

Toll-like receptors (TLRs) mediated signaling plays a vital role in activating innate and adaptive immunity. Although TLR mediated signaling has been comprehensively investigated in mammalian species, the mechanisms underlying TLR signaling in molluscs remain obscure. In the present study, a novel TLR isoform namely McTLR-like1 was identified in the thick shell mussel Mytilus coruscus. McTLR-like1 was highly expressed in molluscan immune-related tissues, and its transcriptional levels in hemocytes were significantly increased when challenged by V. alginolyticus. McTLR-like1 activated nuclear factor κB (NF-κB) and strengthened the transcription and phosphorylation of NF-κB subunit P65 in mammalian cells. Upon the silencing of McTLR-like1, the mRNA expression levels of pro-inflammatory cytokines were down-regulated, and the animals exhibited higher levels of resistance when challenged with V. alginolyticus. McMyD88a mRNA expression was also downregulated alongside McTLR-like1. Furthermore, GST-pull down assays revealed a visible affinity between McTLR-like1 and McMyD88a. Collectively, these results demonstrated that the newly identified gene affiliated to the molluscan TLR family and plays a role in the TLR-mediated activation of inflammatory response via its affinity with MyD88. The present study enhances our knowledge of TLR signaling mechanisms in molluscs and provides new insights into the evolution of TLRs.


Assuntos
Mytilus , NF-kappa B , Animais , Mamíferos/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro , Receptores Toll-Like/metabolismo
19.
Sci Rep ; 11(1): 18744, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548601

RESUMO

The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 µg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin-eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2'-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.


Assuntos
Benzo(a)pireno/toxicidade , Bivalves/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Bivalves/genética , Bivalves/metabolismo
20.
Environ Pollut ; 290: 118042, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523509

RESUMO

Contaminant adsorption by microplastics (MPs) allows them to act as contaminant vehicles or vectors, complicating eco-toxicological study of MPs. The contaminants adsorbed are mainly organic contaminants, especially hydrophobic organic contaminants (HOCs), although heavy-metal adsorption has also been reported. Compared to the mechanisms of HOC adsorption, those for metals are not fully understood. In the present study, combined-exposure assays revealed that polyethylene microplastics (PEMPs, 150 µm) alleviate the toxic effect of nano zinc oxide (nZnO, 20-30 nm) on marine microalgal growth by 14.4%. Thus, we hypothesized that nZnO adsorption onto PEMP surfaces ameliorates its toxicity to microorganisms. To test this hypothesis, PEMP samples isolated from nZnO suspensions were characterized. Their surfaces were observed by SEM, their Zn levels were measured by ICP-MS, and the compound form of Zn on the PEMP surface was determined by XRD analysis. The results indicated that 5.53%-7.16% of the Zn in the suspension is adsorbed during the first 24 h of exposure and that the Zn remains as the ZnO form upon adsorption. The findings in the present study provide important information on the role of MPs as metal oxide vehicles.


Assuntos
Microalgas , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Plásticos , Polietileno , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA