Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133810, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38382340

RESUMO

Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.

2.
Waste Manag ; 175: 22-29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150952

RESUMO

Landfills are essential facilities for treating and disposing municipal solid waste. They emit sulfur-containing odors and serve as an important sink for a new type of pollutant called microplastics (MPs). This study focused on the initial stage of anaerobic degradation to establish the relationship between the release of MPs and odor generation. Our findings show the rapid release of MPs into the leachate in the early stage of landfill and their predominant accumulation in the leachate sediment. The circulating leachate contained 1.45 times higher concentrations of MPs than the noncirculating leachate, with a peak concentration of 39 items·L-1. In addition, fragmentation of MPs occurred. The percentage of MPs with particle sizes of 2.5-5 mm decreased from 66.70 % to 22.32 %, while those measuring 0.1-0.5 mm increased by 33.12 %. A positive correlation was observed between MP release and sulfate reduction. Although leachate circulation increased the release of MPs, it also reduced the overall release time and total amount of MPs exported from the landfill. Compared with the initial landfill waste, the leachate operation mode, regardless of circulation, resulted in a 6.15-8.93-fold increase in MP release. These findings provide a valuable foundation for the simultaneous regulation of traditional pollutant odor and new pollutants (MPs) in landfills.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos , Poluentes Químicos da Água , Plásticos , Microplásticos , Poluentes Químicos da Água/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA