Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(22): 32935-32949, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671264

RESUMO

The high cost and low adsorption capacity of primary metal-organic frameworks (ZIF-8) limit their application in heavy metal removal. In this paper, Co/Zn bimetallic MOF materials were synthesized with excellent adsorption performance for As5+. The adsorption reached equilibrium after 180 min and the maximum adsorption was 250.088 mg/g. In addition, Co-ZIF-8 showed strong selective adsorption of As5+. The adsorption process model of Co-ZIF-8 fits well with the pseudo-second-order kinetic model (R2=0.997) and Langmuir isotherm model (R2=0.994), and it is demonstrated that the adsorption behavior of the adsorbent is a single layer of chemical adsorption. In addition, when the adsorbent enters the arsenic-containing solution, the surface of Co-ZIF-8 is hydrolyzed to produce a large number of Co-OH active sites, and As5+ arrives at the surface of Co-ZIF-8 by electrostatic adsorption and combines with the active sites to generate the arsenic-containing complex As-O-Co. After four cycles, Co-ZIF-8 showed 80% adsorption of As5+. This study not only provides a new method to capture As5+ in water by preparing MOF with partial replacement of the central metal, but also has great significance for the harmless disposal of polluted water.


Assuntos
Arsênio , Cobalto , Estruturas Metalorgânicas , Águas Residuárias , Poluentes Químicos da Água , Adsorção , Arsênio/química , Cobalto/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Cinética , Purificação da Água/métodos
2.
Environ Technol ; : 1-14, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471045

RESUMO

Arsenic-containing sludge (ABG) is a common hazardous waste in the metallurgical industry and poses a serious threat to environmental safety. However, its instability and mobility have a significant impact on the environment. Traditional curing methods are time-consuming and costly, often resulting in incomplete curing. In this study, we introduce a curing/stabilisation method with a steel slag-fly ash gel material after ABG acid treatment. The toxic leaching of arsenic from ABG was reduced to 220 mg/kg by treating the sludge with acids (H2SO4-H3PO4) at different solid-to-liquid ratios. Afterward, H2O2 was added to oxidise As(III) to As(V). The ABG was cured/stabilised using an alkali-activated steel slag-fly ash gel material. The cured product exhibited optimal arsenic fixation under an ABG/steel slag/fly ash mass ratio of 1:4:2, a curing temperature of 60°C, a curing time of 20 h, and an ambient pH of 12.5. Under these conditions, steel slag-fly ash facilitated Ca-As precipitation, resulting in a hydration reaction that produced C-S-H gel. Additionally, the reaction generated calcium hydroxide, calcium and iron pyroxene, silica, and iron ferrite, which adsorbed part of the free arsenic, completing the curing of the acid-treated ABG and stabilising arsenic leaching toxicity. The leaching of arsenic in the ABG was much lower than the Chinese 'Hazardous Wastes Leaching Toxicity Identification Standard' (GB5085.3-2007) (5 mg/L), with an arsenic curing rate exceeding 99%. The mechanism of arsenic solidification involves the combined effects of chemical precipitation, physical encapsulation, and adsorption. Collectively, our findings demonstrated that the use of steel slag-fly ash gel as a functional material for ABG curing holds considerable environmental and economic benefits. Therefore, this study provides theoretical guidance and provides insights into the experimental feasibility of ABG treatment.

3.
J Environ Manage ; 344: 118631, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459815

RESUMO

Efficient and safe removal of arsenic and lead from industrial wastewater is essential for ecological protection. In this study, we developed a novel method using lead slag as a purifying agent and sodium chloride as a reinforcing agent to remove arsenic and lead from industrial wastewater. Through a combination of experiments and simulations, we elucidated the mechanisms involved in this reaction. The initial concentrations of As and Pb ions in the industrial wastewater were 4333 and 188 mg/L, respectively. After the reaction at 25 °C and a pH ranging from 9.7 to 10, the concentrations of arsenic and lead were reduced to 4.9 mg/L and 0.008 mg/L, respectively, achieving a removal rate of 99.9%. Our experimental results demonstrated that Pb2+ and AsO43- ions released from the lead slag and industrial wastewater reacted with Cl- ions to form Pb5(AsO4)3Cl precipitates, thus effectively eliminating a significant amount of As and Pb species. Simulation studies indicated that Pb5(AsO4)3Cl exhibited exceptional stability below 400 °C and could be directly stored. Additionally, the lead slag, which is rich in silica, played a crucial role in removing and stabilizing As and Pb ions. Under alkaline conditions, silica encapsulated the As and Pb species, adhering to the surface of the Pb-As co-precipitates and forming dense, irregular, small particles with internal and external structures that impeded the efflux of As and Pb ions. This phenomenon was confirmed through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The kinetics of As and Pb ion removal was consistent with the pseudo-second-order kinetic model, indicating that the removal process was primarily governed by chemical interactions. Lead slag exhibits significant potential and advantages in the removal of As and Pb. This innovative method offers an effective approach to address heavy metal contamination in industrial wastewater, thus contributing to ecological protection.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Cloretos , Chumbo , Metais Pesados/química , Dióxido de Silício , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
4.
J Environ Manage ; 325(Pt A): 116417, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257224

RESUMO

Wastewater from non-ferrous metal smelting is known as one of the most dangerous sources of arsenic (As) due to its high acidity and high arsenic content. Herein, we propose a new environmental protection process for the efficient purification and removal of arsenic from wastewater by the formation of an AlAsO4@silicate core-shell structure based on the characteristics of aluminum-containing waste residue (AWR). At room temperature, the investigation with AWR almost achieved 100% As removal efficiency from wastewater, reducing the arsenic concentration from 5500 mg/L to 52 µg/L. With Al/As molar ratio of 3.5, the structural properties of AWR provided good adsorption sites for arsenic adsorption, leading to the formation of arsenate and insoluble aluminum arsenate with As. As-containing AWR silicate shells were produced under alkaline conditions, resulting in an arsenic leaching concentration of 1.32 mg/L in the TCLP test. AWR, as an efficient As removal and fixation agent, shows great potential in the treatment of copper smelting wastewater, and is expected to achieve large-scale industrial As removal.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/química , Águas Residuárias , Arseniatos/química , Alumínio/química , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
5.
Chemosphere ; 301: 134736, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500627

RESUMO

High-arsenic wastewater has long been considered a major threat to ecological balance and human health because of its strong toxicity and high mobility. Herein, an environmentally friendly process was proposed for As removal and fixation in the form of As-stabilized mineral, using Lead-Zinc smelting (LZS) slag as the in situ Fe donor, neutralizer, and crystal seed. The slag was dissolved in the wastewater and released Fe and Ca ions, while simultaneously increasing the pH value of the solution to help scorodite synthesis. The dissolved Ca2+ ion preferentially reacted with SO42- ion in the form of CaSO4·2H2O precipitate as in situ "seeds" for As precipitation. The dissolved Fe(II) and As(III) ions were oxidized to Fe(III) and As(V) ions by H2O2, and later reacted with each other to generated amorphous ferric arsenate on the surface of CaSO4·2H2O, and then evolved into scorodite crystals with high stability. With a Fe/As molar ratio of 2, a reaction temperature of 90 °C, and a reaction time of 12 h, 98.42% of As was effectively precipitated from the wastewater with an initial As concentration of 7530.00 mg/L. Moreover, the leached As concentration of the As-bearing precipitate in the TCLP test was 3.46 mg/L. The concentration of the residual As and heavy metals ions in the final filtrate was lower than local wastewater discharge standards, successfully realizing the treatment of smelting wastewater. In summary, a prospective process successfully shows a great potential for co-treatment of LZS wastewater and slag, which could advance the large-scale disposal of LZS plants.


Assuntos
Arsênio , Arsênio/análise , Compostos Férricos , Humanos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro/química , Chumbo , Minerais , Estudos Prospectivos , Águas Residuárias , Zinco/química
6.
Chemosphere ; 301: 134676, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35452645

RESUMO

Molecular sieves have also been used for arsenic adsorption in recent years because of their special structure. In order to solve the problem of arsenic pollution in drinking water and/or industrial wastewater, ZSM-5/Fe adsorbent was prepared by loading iron on ZSM-5 molecular sieve. It is also used as an excellent adsorbent for removing arsenic and other heavy metal ions from industrial wastewater. At room temperature, the concentration of arsenic was reduced from 100 mg/L to 0.006 mg/L after the solution pH was adjusted to the range of weak acid to weak base (4-10) and 0.5 g of ZSM-5/Fe adsorbent was added for reacting 2 h. The adsorption capacity reached 40.00 mg/g, the adsorption efficiency reached 99.99%, reaching the national standard of drinking water. Adsorption thermodynamics, kinetics and isotherms showed that the adsorption mechanism of arsenic is heterogeneous nucleation adsorption (including electrostatic attraction and chemical precipitation). Moreover, ZSM-5/Fe adsorbent can adjust pH spontaneously by using non-skeleton Si-Al phase to achieve effective adsorption from weak acid to weak base. At the same time, ZSM-5/Fe adsorbent showed good reusability and stability in five cycles. This study provides an important idea for the application of ZSM-5 molecular sieve in many fields and the efficient removal of arsenic from drinking water and industrial wastewater.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 287: 117484, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153609

RESUMO

High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO4@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 µg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al3+ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.


Assuntos
Arsênio , Metais Pesados , Adsorção , Arsênio/análise , Silicatos , Águas Residuárias
8.
Water Res ; 157: 269-280, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30959330

RESUMO

High arsenic-containing waste acid from the heavy nonferrous metallurgical sector (Cu, Pb, Zn, Ni, Sn, etc.), one of the most dangerous arsenic hazardous wastes with extremely high arsenic concentrations, has presented enormous challenges to the environment and caused severe environmental pollution over the past few decades due to the lack of affordable and environmentally friendly disposal technologies. Here, we report a green process for the self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator. Firstly, the room-temperature predissolution of magnetite in waste acid provides initial iron ions as a starting precipitator of arsenic, simultaneously providing a suitable pH range and an active surface that are ready for the nucleation and growth of scorodite. Afterwards, arsenic is precipitated in form the of scorodite, which is driven by a mutually improved cycle composed of arsenic precipitation and magnetite dissolution on the surface of magnetite particles. This cycle creates a low supersaturation of iron and constant pH in the waste acid, ensuring the continuous precipitation of arsenic as well-crystallized and environmentally stable scorodite by using magnetite as an in situ iron donator via the reaction of 2Fe3O4 + 6H3AsO4 + H2O2 = 6FeAsO4 + 10H2O. Under optimal conditions, including a 6-h room-temperature predissolution, a 12-h atmospheric reaction at 90 °C and a pH of 2.0 with a magnetite dosage at the Fe3O4/As molar ratio (the molar ratio of Fe3O4 in magnetite to As in waste acid) of 1.33, 99.90% of arsenic was successively removed from waste acid with an initial arsenic concentration of 10300 mg/L. In combination with the good adaptability of this process, the performed case study and prospective process show the successful removal of arsenic from waste acid as well as great potential for large-scale applications.


Assuntos
Arsênio , Óxido Ferroso-Férrico , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Estudos Prospectivos
9.
RSC Adv ; 10(1): 29-42, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492560

RESUMO

The typical disposal of high-arsenic waste acid is at the expense of discharging a large quantity of hazardous solid waste, resulting in secondary pollution of arsenic. We propose a modified lime/ferric salt method for high-arsenic waste acid disposal by the stepwise formation of gypsum and scorodite at atmospheric pressure. The sulfuric acid in the high-arsenic waste acid is first removed by calcium carbonate generating gypsum, and then the arsenic in the solution is precipitated in form of scorodite. Gypsum with an arsenic leaching concentration below 5 mg L-1 is obtained at a final pH of 0.5 in the calcium carbonate neutralization stage. In the second stage, the optimal conditions including a starting pH of 2.0, an Fe/As ratio of 1.5, a reaction temperature in the range of 80-90 °C and a reaction time equal to or longer than 8 hours provide an arsenic removal efficiency of 95.34% by the formation of well-crystallized and environmentally stable scorodite with grain sizes in a range of 1-5 µm. The proposed process offers a promising and facile solution for the low-cost disposal of high-arsenic waste acid in the nonferrous metallurgical industry, which enables an efficient arsenic removal with the good accessibility of chemical reagents and facilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA