Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0293517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743798

RESUMO

As a UNESCO World Cultural Heritage, the aesthetic value of bronze artifacts from the Shang and Chow Dynasties has had a profound influence on Chinese traditional culture and art. To facilitate the digital preservation and protection of these Shang and Chow bronze artifacts (SCB), it becomes imperative to categorize their decorative patterns. Therefore, a SCB pattern classification method of differential evolution called Shang and Chow Bronze Convolutional Neural Network (SCB-CNN) is proposed. Firstly, the original bronze decorative patterns of Shang and Chow dynasties are collected, and the samples are expanded through image augmentation technology to form a training dataset. Secondly, based on the classical convolutional neural network structure, the recognition and classification of bronze patterns are implemented by adjusting the network parameters. Then, the initial parameters of the convolutional neural network are optimized by differential evolution algorithm, and the optimized SCB-CNN is simulated. Finally, comparative experiments were conducted between the optimized SCB-CNN, the unoptimized model, VGG-Net, and GoogleNet. The experimental results indicate that the optimized SCB-CNN significantly reduces training time while maintaining fast prediction speed, convergence speed, and high accuracy. This study provides new insights for the inheritance and innovation research of SCB patterns.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , China , Arqueologia/métodos , História Antiga
2.
Multimed Tools Appl ; : 1-27, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37362685

RESUMO

The Coronavirus disease 2019, or COVID-19, has shifted the medical paradigm from face-to-face to telehealth. Telehealth has become a vital resource to contain the virus spread and ensure the continued care of patients. In terms of preventing cardiovascular diseases, automating electrocardiogram (ECG) classification is a promising telehealth intervention. The healthcare service ensures that patient care is appropriate, comfortable, and accessible. Convolutional neural networks (CNNs) have demonstrated promising results in ECG categorization, which require high accuracy and short training time to ensure healthcare quality. This study proposes a one-dimensional-CNN (1D-CNN) arrhythmia classification based on the differential evolution (DE) algorithm to optimize the accuracy of ECG classification and training time. The performance of 1D-CNNs of different activation functions are optimized based on the standard DE algorithm. Finally, based on MIT-BIH and SCDH arrhythmia databases, the performances of optimized and unoptimized 1D-CNN are compared and analysed. Results show that the 1D-CNN optimized by the DE has higher accuracy in heartbeats classification. The optimized 1D-CNN improves from 97.6% to 99.5% on MIT-BIH and from 80.2% to 88.5% on SCDH. Therefore, the optimized 1D-CNN shows improvements of 1.9% and 8.3% in the two datasets, respectively. In addition, compared with the unoptimized 1D-CNN based on the same parameter settings, the optimized 1D-CNN has less training time. Under the conditions of ReLU function and 10 epochs, the training takes 9.22 s on MIT-BIH and 10.35 s on SCDH, reducing training time by 67.2% and 64.2%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA