Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Plant Cell Environ ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884345

RESUMO

Proanthocyanidins (PAs) are important metabolites that enhance freezing tolerance of plants. Actinidia arguta, especially freezing-tolerant germplasms, accumulate abundant PAs in dormant shoots and thereby enhance freezing tolerance, but the underlying mechanism is unknown. In this study, we used two A. arguta with contrasting cold-resistant phenotypes, KL and RB, to explore the mechanisms in response to cold tolerance. We determined that a leucoanthocyanidin reductase gene (AaLAR1) was more highly expressed in freezing-tolerant KL than in freezing-sensitive RB. Moreover, overexpressing AaLAR1 in kiwifruit promoted PAs biosynthesis and enhanced cold tolerance. The AaLAR1 promoters of various A. arguta germplasms differ due to the presence of a 60-bp deletion in cold-tolerant genotypes that forms a functional binding site for MYC-type transcription factor. Yeast one-hybrid and two-hybrid, dual-luciferase reporter, bimolecular fluorescence complementation and coimmunoprecipitation assays indicated that the AaMYC2a binds to the MYC-core cis-element in the AaLAR1 promoter with the assistance of AaMYB5a, thereby promoting PAs accumulation in the shoots of cold-tolerant kiwifruit. We conclude that the variation in the AaLAR1 promoter and the AaMYC2a-AaMYB5a-AaLAR1 module shape freezing tolerance in A. arguta. The identification of a key structural variation in the AaLAR1 promoter offers a new target for resistance breeding of kiwifruit.

2.
Mol Biol Rep ; 51(1): 112, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227080

RESUMO

BACKGROUND: Light is essential for kiwifruit development, in which photoresponse factors contributes greatly to the quality formation. 'Light sensitive hypocotyls, also known as light-dependent short hypocotyls' (LSH) gene family can participate in fruit development as photoresponse factor. However, the key LSH gene that determine kiwifruit development remains unclear. This study aim to screen and identify the key gene AaLSH9 in A. arguta. MATERIALS AND METHODS: Genome-wide identification of the LSH gene family was used to analyse LSH genes in kiwifruit. Homologous cloning was used to confirm the sequence of candidate LSH genes. qRT-PCR and cluster analysis of expression pattern were used to screen the key AaLSH9 gene. Subcellular localization of AaLSH9 in tobacco leaves and overexpression of AaLSH9 in Arabidopsis thaliana hy5 mutant plants were used to define the acting place in cell and identify molecular function, respectively. RESULTS: We identified 15 LSH genes, which were divided into two sub-families namely A and B. Domain analysis of A and B showed that they contained different domain organizations, which possibly played key roles in the evolution process. Three LSH genes, AaLSH2, AaLSH9, and AaLSH11, were successfully isolated from Actinidia arguta. The expression pattern and cluster analysis of these three AaLSH genes suggested AaLSH9 might be a key photoresponse gene participating in fruit development in A. arguta. Subcellular localization showed AaLSH9 protein was located in the nucleus. The overexpression of AaLSH9 gene in Arabidopsis thaliana hy5 mutant plants partially complemented the long hypocotyls of hy5 mutant, implying AaLSH9 played a key role as photoresponse factor in cells. In addition, the seed coat color of A. thaliana over-expressing AaLSH9 became lighter than the wide type A.thaliana. Finally, AaCOP1 was confirmed as photoresponse factor to participate in developmental process by stable transgenic A. thaliana. CONCLUSIONS: AaLSH9 can be involved in kiwifruit (A. arguta) development as key photoresponse factor. Our results not only identified the photoresponse factors AaLSH9 and AaCOP1 but also provided insights into their key role in fruit quality improvement in the process of light response.


Assuntos
Actinidia , Arabidopsis , Actinidia/genética , Arabidopsis/genética , Análise por Conglomerados , Frutas/genética , Hipocótilo
3.
Phys Chem Chem Phys ; 26(5): 4752-4758, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251976

RESUMO

Dinitroimidazole (DNI) and dinitropyrazole (DNP), along with their congeners, possess similar molecular structures but exhibit distinct melting points. To analyse and elucidate the fundamental reasons for property differences from the perspective of intermolecular interactions, we proposed a simplified approach named binding energy in clusters (BEC) in computing weak interactions within complex crystal systems. Based on the results of the symmetry-adapted perturbation theory (SAPT) calculations, an approximate estimation of the melting point range can be derived by taking into account the cumulative effect (energy of electrostatic, dispersion and induction terms) and repulsive effect (energy of exchange term) values. We have also proposed a formula for calculating the specific melting point, which indicates that stronger intermolecular interactions have a major impact on the melting point, while the distribution of weak interactions also affects the melting point. This work would provide an effective reference for molecular design and structure-performance analysis.

4.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958739

RESUMO

Ion transport is crucial for salt tolerance in plants. Under salt stress, the high-affinity K+ transporter (HKT) family is mainly responsible for the long-distance transport of salt ions which help to reduce the deleterious effects of high concentrations of ions accumulated within plants. Kiwifruit is well known for its susceptibility to salt stress. Therefore, a current study was designed to decipher the molecular regulatory role of kiwifruit HKT members in the face of salt stress. The transcriptome data from Actinidia valvata revealed that salt stress significantly induced the expression of AvHKT1. A multiple sequence alignment analysis indicated that the AvHKT1 protein contains three conserved amino acid sites for the HKT family. According to subcellular localization analysis, the protein was primarily present in the cell membrane and nucleus. Additionally, we tested the AvHKT1 overexpression in 'Hongyang' kiwifruit, and the results showed that the transgenic lines exhibited less leaf damage and improved plant growth compared to the control plants. The transgenic lines displayed significantly higher SPAD and Fv/Fm values than the control plants. The MDA contents of transgenic lines were also lower than that of the control plants. Furthermore, the transgenic lines accumulated lower Na+ and K+ contents, proving this protein involvement in the transport of Na+ and K+ and classification as a type II HKT transporter. Further research showed that the peroxidase (POD) activity in the transgenic lines was significantly higher, indicating that the salt-induced overexpression of AvHKT1 also scavenged POD. The promoter of AvHKT1 contained phytohormone and abiotic stress-responsive cis-elements. In a nutshell, AvHKT1 improved kiwifruit tolerance to salinity by facilitating ion transport under salt stress conditions.


Assuntos
Actinidia , Tolerância ao Sal , Tolerância ao Sal/genética , Actinidia/genética , Actinidia/metabolismo , Proteínas de Plantas/metabolismo , Estresse Salino , Proteínas de Membrana Transportadoras/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Antioxidantes/farmacologia , Íons/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Sci Rep ; 13(1): 12780, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550389

RESUMO

The fruit of the dioecious plant Actinidia arguta has become a great attraction recently. It has long been difficult to distinguish the genders of hybrid seedlings before flowering, therefore increasing the expenditures of breeding. To produce reliable molecular marker for gender identification, this research utilized whole-genome re-sequencing of 15 males and 15 females from an 8-year-old cross population to develop gender specific markers. P51 and P11 were identified as sex-linked markers after verification. Both of these markers, according to the PCR results, only amplified a single band in male samples. These two markers were tested in 97 hybrids (52 females and 45 males) and 31 wild individuals (13 females and 18 males), with an accuracy of 96.88% and 96.09%, correspondingly. This research also verified the universalities of the two markers in Actinidia chinensis samples, and it could be inferred from the PCR results that neither marker was applicable to A. chinensis samples. The BLAST results of the two markers demonstrated that the two markers were closely aligned with different parts of the Y male-specific region of A. chinensis genome, thus they were likely to be useful for the research on the mechanism of sex determination of A. arguta. The two male-linked makers, P51 and P11, have already been used in sex-identification of A. arguta seedlings.


Assuntos
Actinidia , Feminino , Humanos , Masculino , Criança , Actinidia/genética , Melhoramento Vegetal , Frutas/genética , Sequenciamento Completo do Genoma
6.
Environ Sci Pollut Res Int ; 30(18): 53524-53537, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857003

RESUMO

Urban reservoirs serve many purposes including recreation and drinking water, and larger bodies of water can alter the surrounding air temperatures, making urban areas cooler in summer and warmer in winter. However, reservoirs may also be sinks for contaminants. One such group of contaminants, the polybrominated diphenyl ethers (PBDEs), are persistent organic pollutants known to accumulate in sediments and suspended particulate matter (SPM). Few studies have been conducted on PBDEs in water, SPM, and sediment from reservoirs of Shenzhen which is a mega city in South China. To this end, 12 PBDEs were measured in water, SPM, and sediment samples during the dry season (DS) and wet season (WS), to explain the spatiotemporal distribution, congener profiles, sources, and risks of pollutants in four reservoirs (A-D) and their tributaries in the study region. The concentration of ∑12PBDEs during the DS was found to be significantly higher than that during the WS. Source apportionment suggested that commercial penta-, octa-, and deca-BDEs are the major components of PBDEs, resulting mainly from atmospheric deposition, wastewater discharge, and external water-diversion projects. Further, attention should be paid to electronic equipment manufacturing factories in the study area. Risk assessment indicated risk of PBDEs (especially BDE-209) in sediment and SPM to be of concern. This study provides important data support for the control of PBDEs in natural drinking water sources.


Assuntos
Água Potável , Poluentes Químicos da Água , Sedimentos Geológicos , Éteres Difenil Halogenados/análise , Material Particulado , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , China
7.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614245

RESUMO

Fruit plants are severely constrained by salt stress in the soil due to their sessile nature. Ca2+ sensors, which are known as CBL-interacting protein kinases (CIPKs), transmit abiotic stress signals to plants. Therefore, it is imperative to investigate the molecular regulatory role of CIPKs underlying salt stress tolerance in kiwifruit. In the current study, we have identified 42 CIPK genes from Actinidia. valvata (A.valvata). All the AvCIPKs were divided into four different phylogenetic groups. Moreover, these genes showed different conserved motifs. The expression pattern analysis showed that AvCIPK11 was specifically highly expressed under salt stress. The overexpression of AvCIPK11 in 'Hongyang' (a salt sensitive commercial cultivar from Actinidia chinensis) enhanced salt tolerance by maintaining K+/Na+ homeostasis in the leaf and positively improving the activity of POD. In addition, the salt-related genes AcCBL1 and AcNHX1 had higher expression in overexpression lines. Collectively, our study suggested that AvCIPK11 is involved in the positive regulation of salt tolerance in kiwifruit.


Assuntos
Actinidia , Transcriptoma , Actinidia/genética , Actinidia/metabolismo , Filogenia , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Environ Sci Pollut Res Int ; 30(6): 14932-14942, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36161588

RESUMO

Organophosphorus flame retardants (OPFRs) are widely used in various industrial manufacturing processes; thus, their environmental impact in agglomerated industrial areas is of great concern. In this study, seventeen kinds of OPFRs and five kinds of organophosphate diesters (Di-OPs) in water and upper sediment samples from two urban rivers in the agglomerated industrial area of Shenzhen city, China, were investigated. The results showed that the total concentrations of detectable OPFRs ranged from 3438.83 to 12,838.87 ng/L with an average of 6494.94 ng/L in water samples and from 47.16 to 524.46 ng/g (dry weight, dw) with an average of 181.48 ng/g dw in sediment. The values were higher than those in other rivers worldwide. Tris(2-chloroethyl) phosphate (TCEP) is the predominant OPFRs in water and upper sediment, up to 10,664.23 ng/L in water and 414.12 ng/g dw in sediment. The total concentration of OPFRs of sediment samples in the Maozhou River was around twice as high as in the Guanlan River. The results indicated that the level of OPFRs was associated with the industrial activity intensity. Di-OPs exhibited lower concentrations than their parent compounds, and can be attributed to the degradation/metabolism of their parent compounds in the river. The sediment-water partition of OPFRs is significantly correlated with their log Kow values. Risk assessment revealed moderate ecological risks posed by OPFRs in water to aquatic organisms. The present study revealed the pollution status of OPFRs in rivers from agglomerated industrial and residential areas.


Assuntos
Retardadores de Chama , Água , Compostos Organofosforados , Retardadores de Chama/análise , Rios , Organofosfatos , Monitoramento Ambiental/métodos , China
9.
Hortic Res ; 9: uhac189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338850

RESUMO

The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.

10.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015401

RESUMO

Kiwifruit is commonly sensitive to waterlogging stress, and grafting onto a waterlogging-tolerant rootstock is an efficient strategy for enhancing the waterlogging tolerance of kiwifruit plants. KR5 (Actinidia valvata) is more tolerant to waterlogging than 'Hayward' (A. deliciosa) and is a potential resistant rootstock for kiwifruit production. Here, we focused on evaluating the performance of the waterlogging-sensitive kiwifruit scion cultivar 'Zhongmi 2' when grafted onto KR5 (referred to as ZM2/KR5) and Hayward (referred to as ZM2/HWD) rootstocks, respectively, under waterlogging stress. The results showed 'Zhongmi 2' performed much better when grafted onto KR5 than when grafted onto 'Hayward', exhibiting higher photosynthetic efficiency and reduced reactive oxygen species (ROS) damage. Furthermore, the roots of ZM2/KR5 plants showed greater root activity and energy supply, lower ROS damage, and more stable osmotic adjustment ability than the roots of ZM2/HWD plants under waterlogging stress. In addition, we detected the expression of six key genes involved in the kiwifruit waterlogging response mechanism, and these genes were remarkably induced in the ZM2/KR5 roots but not in the ZM2/HWD roots under waterlogging stress. Moreover, principal component analysis (PCA) further demonstrated the differences in the physiological responses of the ZM2/KR5 and ZM2/HWD plants under waterlogging stress. These results demonstrated that the KR5 rootstock can improve the waterlogging tolerance of grafted kiwi plants by regulating physiological and biochemical metabolism and molecular responses.

11.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887372

RESUMO

Kiwifruit is loved by consumers for its unique taste and rich vitamin C content. Kiwifruit are very sensitive to adverse soil environments owing to fleshy and shallow roots, which limits the uptake of water and nutrients into the root system, resulting in low yield and poor fruit quality. Lateral roots are the key organs for plants to absorb water and nutrients. Improving water and fertilizer use efficiency by promoting lateral root development is a feasible method to improve yield and quality. Expansin proteins plays a major role in lateral root growth; hence, it is important to identify expansin protein family members, screen key genes, and explore gene function in root development. In this study, 41 expansin genes were identified based on the genome of kiwifruit ('Hongyang', Actinidia chinensis). By clustering with the Arabidopsis thaliana expansin protein family, the 41 AcExpansin proteins were divided into four subfamilies. The AcExpansin protein family was further analysed by bioinformatics methods and was shown to be evolutionarily diverse and conserved at the DNA and protein levels. Based on previous transcriptome data and quantitative real-time PCR assays, we screened the candidate gene AcEXPA23. Overexpression of AcEXPA23 in kiwifruit increased the number of kiwifruit lateral roots.


Assuntos
Actinidia , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo
12.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886990

RESUMO

Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant-pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.


Assuntos
Actinidia , Pseudomonas syringae , Actinidia/metabolismo , Genótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia
13.
Genes (Basel) ; 13(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35627204

RESUMO

The internode length affects the status of fruiting branches and shapes the vine architecture. MYB TFs (transcription factors) have been widely studied and reported to control many biological processes including secondary metabolism, abiotic stresses, growth and development, etc. However, the roles of MYB TFs in regulating internode length remain poorly understood. Here, we demonstrated that a secondary metabolism-related R2R3-MYB TF AaMYBC1 from Actinidia arguta was involved in the regulation of internode length by combined analysis of transcriptome and metabolome of transgenic tobacco plants. The metabolome analysis of OE (over-expressed tobacco) and WT (wild-typed tobacco) showed that there were a total of 1000 metabolites, 176 of which had significant differences. A key metabolite pme1651 annotated as indole 3-acetic acid belonged to phytohormone that was involved in internode length regulation. The RNA-seq analysis presented 446 differentially expressed genes (DEGs) between OE and WT, 14 of which were common DEGs in KEGG and GO enrichment. Through the combined analysis of metabolome and transcriptome in transgenic and wild-type tobacco, three key genes including two SAUR and a GH3 gene were possibly involved in internode elongation. Finally, a regulatory module was deduced to show the role of AaMYBC1 in internode elongation. Our results proposed a molecular mechanism of AaMYBC1 regulating internode length by mediated auxin signaling, implying the potential role in regulating the vine architecture.


Assuntos
Actinidia , Nicotiana , Actinidia/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-35270815

RESUMO

Human exposure to organophosphate esters (OPEs) is more pervasive in industrial areas manufacturing OPE-related products. OPE exposure is of great concern due to its associations with adverse health effects, while studies on OPE exposure in industrial districts are scarce. This study aimed to assess human exposure to OPEs in a typical industrial area producing large amounts of OPE-related products in Shenzhen, China. Tris (2-chloroethyl)-phosphate (TCEP), tris (2-chloroisopropyl) phosphate (TCPP) and other common OPEs were analyzed in urine (n = 30) and plasma (n = 21) samples. Moreover, we measured five OPE metabolites (mOPEs) in plasma samples (n = 21). The results show that TCPP and TCEP are dominant compounds, with moderate to high levels compared with those reported in urine and plasma samples from other regions. In addition, di-n-butyl phosphate (DnBP) and diethyl phosphite (DEP) were frequently detected in plasma samples and could be considered as biomarkers. Risk assessment revealed a moderate to high potential health risk from TCEP exposure. Our results provide basic data for human exposure to OPEs in industrial areas and call for the prevention and mitigation of industrial chlorinated OPE pollution.


Assuntos
Retardadores de Chama , China , Ésteres , Humanos , Organofosfatos/urina , Fosfatos , Plastificantes
15.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328659

RESUMO

Actinidia valvata possesses waterlogging tolerance; however, the mechanisms underlying this trait are poorly characterized. Here, we performed a transcriptome analysis by combining single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing and investigated the physiological responses of the roots of KR5 (A. valvata, a tolerant genotype) after 0, 12, 24 and 72 h of waterlogging stress. KR5 roots responded to waterlogging stress mainly via carbohydrate and free amino acids metabolism and reactive oxygen species (ROS) scavenging pathways. Trehalose-6-phosphate synthase (TPS) activity, alcohol dehydrogenase (ADH) activity and the total free amino acid content increased significantly under waterlogging stress. The nicotinamide adenine dinucleotide-dependent glutamate synthase/alanine aminotransferase (NADH-GOGAT/AlaAT) cycle was correlated with alanine accumulation. Levels of genes encoding peroxidase (POD) and catalase (CAT) decreased and enzyme activity increased under waterlogging stress. Members of the LATERAL ORGAN BOUNDARIES (LOB), AP2/ERF-ERF, Trihelix and C3H transcription factor families were identified as potential regulators of the transcriptional response. Several hub genes were identified as key factors in the response to waterlogging stress by a weighted gene co-expression network analysis (WGCNA). Our results provide insights into the factors contributing to waterlogging tolerance in kiwifruit, providing a basis for further studies of interspecific differences in an important plant trait and for molecular breeding.


Assuntos
Actinidia , Actinidia/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , RNA-Seq , Estresse Fisiológico/genética , Transcriptoma
16.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269737

RESUMO

Actinidia arguta (A. arguta) is a kind of climacteric fruit that quickly softens and limits fruit shelf-life and commercial value. Therefore, it is of great significance to develop kiwifruit genotypes with an extended shelf-life of fruit. However, the ripening and softening mechanisms remain unclear in A. arguta. Here, we demonstrated that a key polygalacturonase (PG)-encoding gene AaPG18 was involved in A. arguta ripening through the degradation of the cell wall. Fruits were harvested at three developmental stages (S1, S2, and S3) for high-throughput transcriptome sequencing, based on which two candidate transcripts c109562_g1 and c111961_g1 were screened. The genome-wide identification of the PG gene family assigned c109562_g1 and c111961_g1 to correspond to AaPG4 and AaPG18, respectively. The expression profiles of candidate genes at six preharvest stages of fruit showed significantly higher expression levels of AaPG18 than AaPG4, indicating AaPG18 might be a key gene during fruit ripening processes. The subcellular localization displayed AaPG18 was located at the cytoplasmic membrane. The transient overexpression of AaPG18 in strawberry and the following morphological observation suggested AaPG18 played a key role in maintaining the stability of cell morphology. The homologous transient transformation in A. arguta "RB-4" proved the crucial function of AaPG18 in fruit ripening processes by causing the rapid redness of the fruit, which was an indicator of fruit maturity. All in all, our results identified AaPG18 as a key candidate gene involved in cell wall degeneration, which provides a basis for the subsequent exploration of the molecular mechanisms underlying the ripening and softening of A. arguta fruit.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
17.
Plants (Basel) ; 10(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34961057

RESUMO

Rootstocks from Actinidia valvata are much more tolerant to waterlogging stress than those from Actinidia deliciosa, which are commonly used in kiwifruit production. To date, the tolerance mechanism of A. valvata rootstocks' adaptation to waterlogging stress has not been well explored. In this study, the responses of KR5 (A. valvata) and 'Hayward' (A. deliciosa) to waterlogging stress were compared. Results showed that KR5 plants performed much better than 'Hayward' during waterlogging by exhibiting higher net photosynthetic rates in leaves, more rapid formation of adventitious roots at the base of stems, and less severe damage to the main root system. In addition to morphological adaptations, metabolic responses of roots including sufficient sucrose reserves, modulated adjustment of fermentative enzymes, avoidance of excess lactic acid and ethanol accumulation, and promoted accumulation of total amino acids all possibly rendered KR5 plants more tolerant to waterlogging stress compared to 'Hayward' plants. Lysine contents of roots under waterlogging stress were increased in 'Hayward' and decreased in KR5 compared with their corresponding controls. Overall, our results revealed the morphological and metabolic adaptations of two kiwifruit rootstocks to waterlogging stress, which may be responsible for their genotypic difference in waterlogging tolerance.

18.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769325

RESUMO

Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.


Assuntos
Actinidia/fisiologia , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Salino , Fatores de Transcrição/metabolismo , Actinidia/genética , Actinidia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Frutas/genética , Frutas/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética
19.
Inorg Chem ; 60(22): 17033-17039, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34694789

RESUMO

The development of hypergolic materials has aroused great interest due to their important applications in aerospace technology. In this work, six new energetic complexes were prepared and comprehensively characterized. All energetic complexes had isostructural characteristics, which made them ideal candidates for studying their structure-performance relationships. These energetic complexes had good thermal stabilities and excellent specific impulses. The vacuum-specific impulses were in the range 264.0-271.9 s, which was greater than most reported solid hypergolic materials. Moreover, the hypergolic performance of these compounds was examined by using 100% HNO3 as the oxidizer, and their catalytic performance in the hypergolic reaction of typical energetic ionic liquids and 90% H2O2 was comprehensively studied. All compounds displayed excellent hypergolic performance with the shortest ignition delay time of 4 ms. The examined copper-containing energetic complexes displayed excellent catalytic activities for the hypergolic reaction between energetic ionic liquids and 90% H2O2. The shortest ignition delay time of the examined hypergolic reactions was 31 ms. The suitable physicochemical properties, excellent energetic properties, and high catalytic activity of the hypergolic reactions have demonstrated the great potential of these energetic complexes as promoters for the development of green hypergolic bipropellants.

20.
Biology (Basel) ; 10(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34356503

RESUMO

Kiwifruit coloration is an important agronomic trait used to determine fruit quality, and light plays a vital role in the coloration process. The effect of light on fruit coloration has been studied in many species, but differences in the photoresponse of different fruit parts during fruit coloration is unclear in kiwifruit (Actinidia arguta). In this study, peel and core with bagging and non-bagging treatment at two stages were selected to perform high throughput RNA sequencing. A total of 100,417 unigenes (25,186 unigenes with length beyond 1000 bp) were obtained, of which 37,519 unigenes were annotated in functional databases. GO and KEGG enrichment results showed that 'plant hormone signal transduction' and 'carbon metabolism' were the key pathways in peel and core coloration, respectively. A total of 27 MYB-related TFs (transcription factors) were differentially expressed in peel and core. An R2R3-MYB typed TF, AaMYB308like, possibly served as a candidate objective, which played a vital role in light-inducible fruit coloration based on bioinformatics analysis. Transient overexpression of AaMYB308like suggested overexpression of AaMYB308like elevated transcription level of NtCHI in Nicotiana tabacum leaves. Integration of all these results imply that AaMYB308like might be served as a light-responsive transcription factor to regulate anthocyanin biosynthesis in A. arguta. Moreover, our study provided important insights into photoreponse mechanisms in A. arguta coloration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA