Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134457

RESUMO

Circulating tumor DNA (ctDNA) is a critical biomarker for early tumor detection. However, accurately quantifying low-abundance ctDNA in human serum remains a significant challenge. To address this challenge, we introduce a bimodal biosensor tailored for detecting the epidermal growth factor receptor (EGFR) mutation L858R in specific nonsmall cell lung cancer (NSCLC) patients. This biosensor utilizes dual CRISPR-Cas12a systems to quantify the target via fluorescence and electrochemical signals. In our system, the EGFR L858R exhibits resistance to digestion by the restriction enzyme MscI, which activates the first CRISPR-Cas12a protein and inhibits the binding of magnetic beads with fluorescein (FAM)-labeled hybridization chain reaction (HCR) products, thereby reducing the fluorescence signal. This activation also inhibits the cleavage activity of the second CRISPR-Cas12a protein, allowing the electrode to sustain a higher electrochemical signal from nanomaterials. The wild-type EGFR (wt EGFR) produces the opposite effect. Consequently, the concentration of EGFR L858R can be accurately quantified and verified using both fluorescence and electrochemical signals. The biosensor offers a dynamic detection ranging from 10 fM to 1 µM, with a detection limit of 372 aM. It demonstrates excellent specificity, reproducibility, stability, and recovery rates. Moreover, the sensor's enhanced analytical sensitivity highlights its critical role in biosensing applications and early disease diagnosis.

2.
Nat Commun ; 15(1): 6694, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107317

RESUMO

Prefrontal cortical activity represents stimuli in working memory tasks in a low-dimensional manifold that transforms over the course of a trial. Such transformations reflect specific cognitive operations, so that, for example, the rotation of stimulus representations is thought to reduce interference by distractor stimuli. Here we show that rotations occur in the low-dimensional activity space of prefrontal neurons in naïve male monkeys (Macaca mulatta), while passively viewing familiar stimuli. Moreover, some aspects of these rotations remain remarkably unchanged after training to perform working memory tasks. Significant training effects are still present in population dynamics, which further distinguish correct and error trials during task execution. Our results reveal automatic functions of prefrontal neural circuits allow transformations that may aid cognitive flexibility.


Assuntos
Macaca mulatta , Memória de Curto Prazo , Neurônios , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Masculino , Neurônios/fisiologia , Memória de Curto Prazo/fisiologia , Cognição/fisiologia , Estimulação Luminosa
3.
Talanta ; 279: 126665, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116728

RESUMO

Mucin 1 (MUC1) is frequently overexpressed in various cancers and is essential for early cancer detection. Current methods to detect MUC1 are expensive, time-consuming, and require skilled personnel. Therefore, developing a simple, sensitive, highly selective MUC1 detection sensor is necessary. In this study, we proposed a novel "signal-on-off" strategy that, in the presence of MUC1, synergistically integrates catalytic hairpin assembly (CHA) with DNA tetrahedron (Td)-based nonlinear hybridization chain reaction (HCR) to enhance the immobilization of electrochemically active methylene blue (MB) on magnetic nanoparticles (MNP), marking the MB signal "on". Concurrently, the activation of CRISPR-Cas12a by isothermal amplification products triggers the cleavage of single-stranded DNA (ssDNA) at the electrode surface, resulting in a reduction of MgAl-LDH@Fc-AuFe-MIL-101 (containing ferrocene, Fc) on the electrode, presenting the "signal-off" state. Both MB and MgAl-LDH@Fc-AuFe-MIL-101 electrochemical signals were measured and analyzed. Assay parameters were optimized, and sensitivity, stability, and linear range were assessed. Across a concentration spectrum of MUC1 spanning from 10 fg/mL to 100 ng/mL, the MB and MgAl-LDH@Fc-AuFe-MIL-101 signals were calibrated with each other, demonstrating a "signal-on-off" dual electrochemical signaling pattern. This allows for the precise and quantitative detection of MUC1 in clinical samples, offering significant potential for medical diagnosis.

4.
Plant Physiol Biochem ; 215: 109011, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128403

RESUMO

Phosphate deficiency and drought are significant environmental constraints that impact both the productivity and quality of wheat. The interaction between phosphorus and water facilitates their mutual absorption processes in plants. Under conditions of both phosphorus deficiency and drought stress, we observed a significant upregulation in the expression of wheat MYB-CC transcription factors through the transcriptome analysis. 52 TaMYB-CC genes in wheat were identified and analyzed their evolutionary relationships, structures, and expression patterns. The TaMYB-CC5 gene exhibited specific expression in roots and demonstrated significant upregulation under phosphorus deficiency and drought stress compared to other TaMYB-CC genes. The overexpression of TaMYB-CC5A in Arabidopsis resulted in a significant increase of root length under stress conditions, thereby enhancing tolerance to phosphate starvation and drought stress. The wheat lines with silenced TaMYB-CC5 genes exhibited reduced root length under stress conditions and increased sensitivity to phosphate deficiency and drought stress. In addition, silencing the TaMYB-CC5 genes resulted in altered phosphorus content in leaves but did not lead to a reduction in phosphorus content in roots. Enrichment analysis the co-expression genes of TaMYB-CC5 transcription factors, we found the zinc-induced facilitator-like (ZIFL) genes were prominent associated with TaMYB-CC5 gene. The TaZIFL1, TaZIFL2, and TaZIFL5 genes were verified specifically expressed in roots and regulated by TaMYB-CC5 transcript factor. Our study reveals the pivotal role of the TaMYB-CC5 gene in regulating TaZIFL genes, which is crucial for maintaining normal root growth under phosphorus deficiency and drought stress, thereby enhanced resistance to these abiotic stresses in wheat.

5.
Am J Transl Res ; 16(6): 2501-2508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006257

RESUMO

OBJECTIVES: To assess the efficacy, safety, and impact on serum cytokines of olopatadine hydrochloride (OLP) combined with desloratadine citrate disodium (DES) in treating urticaria. METHODS: We retrospectively analyzed 114 urticaria patients treated at the Affiliated Hospital of Xinyang Vocational and Technical College from March 2020 to March 2023. The control group (55 patients) received DES, while the research group (59 patients) received OLP+DES combination therapy. We compared efficacy, safety (including epigastric pain, dry mouth, lethargy, dizziness, and fatigue), changes in serum cytokines (interleukin [IL]-2, IL-4, and interferon [IFN]-γ), symptom resolution (wheal number, wheal size, and itching degree), and 3-month recurrence rates. A univariate analysis was also conducted to identify factors influencing urticaria recurrence. RESULTS: The research group exhibited a significantly higher overall efficacy rate, lower incidence of adverse events, and reduced recurrence rates at 3 months (all P<0.05) compared to the control group. Post-treatment, the research group showed significant increases in IL-2 and IFN-γ levels and reductions in IL-4 levels, wheal number, wheal size, and itching degree (all P<0.05). Factors such as history of drinking/smoking, IL-2 levels, and treatment method were associated with urticaria recurrence (all P<0.05). CONCLUSIONS: The combination of OLP and DES is an effective and safe treatment option for urticaria, significantly improving serum cytokine profiles, alleviating symptoms, and reducing recurrence risk.

6.
Molecules ; 29(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064899

RESUMO

Nickel-based catalysts are regarded as the most excellent urea oxidation reaction (UOR) catalysts in alkaline media. Whatever kind of nickel-based catalysts is utilized to catalyze UOR, it is widely believed that the in situ-formed Ni3+ moieties are the true active sites and the as-utilized nickel-based catalysts just serve as pre-catalysts. Digging the pre-catalyst effect on the activity of Ni3+ moieties helps to better design nickel-based catalysts. Herein, five different anions of OH-, CO32-, SiO32-, MoO42-, and WO42- were used to bond with Ni2+ to fabricate the pre-catalysts ß-Ni(OH)2, Ni-CO3, Ni-SiO3, Ni-MoO4, and Ni-WO4. It is found that the true active sites of the five as-fabricated catalysts are the same in situ-formed Ni3+ moieties and the five as-fabricated catalysts demonstrate different UOR activity. Although the as-synthesized five catalysts just serve as the pre-catalysts, they determine the quantity of active sites and activity per active site, thus determining the catalytic activity of the catalysts. Among the five catalysts, the amorphous nickel tungstate exhibits the most superior activity per active site and can catalyze UOR to reach 158.10 mA·cm-2 at 1.6 V, exceeding the majority of catalysts. This work makes for a deeper understanding of the pre-catalyst effect on UOR activity and helps to better design nickel-based UOR catalysts.

7.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892338

RESUMO

The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA-6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.


Assuntos
Compostos de Benzil , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Purinas , Ácido Salicílico , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Purinas/farmacologia , Compostos de Benzil/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Oxilipinas/farmacologia , Citocininas/metabolismo , Citocininas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/genética , Perfilação da Expressão Gênica , Transdução de Sinais/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Ciclopentanos/farmacologia
8.
Cancer Lett ; 598: 217094, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.


Assuntos
Eletroacupuntura , Glicólise , Lactoilglutationa Liase , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Eletroacupuntura/métodos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Lactoilglutationa Liase/metabolismo , Lactoilglutationa Liase/genética , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Paclitaxel/farmacologia , Aldeído Pirúvico/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Toxicol Lett ; 397: 34-41, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734219

RESUMO

Humantenmine, koumine, and gelsemine are three indole alkaloids found in the highly toxic plant Gelsemium. Humantenmine was the most toxic, followed by gelsemine and koumine. The aim of this study was to investigate and analyze the effects of these three substances on tissue distribution and toxicity in mice pretreated with the Cytochrome P450 3A4 (CYP3A4) inducer ketoconazole and the inhibitor rifampicin. The in vivo test results showed that the three alkaloids were absorbed rapidly and had the ability to penetrate the blood-brain barrier. At 5 min after intraperitoneal injection, the three alkaloids were widely distributed in various tissues and organs, the spleen and pancreas were the most distributed, and the content of all tissues decreased significantly at 20 min. Induction or inhibition of CYP3A4 in vivo can regulate the distribution and elimination effects of the three alkaloids in various tissues and organs. Additionally, induction of CYP3A4 can reduce the toxicity of humantenmine, and vice versa. Changes in CYP3A4 levels may account for the difference in toxicity of humantenmine. These findings provide a reliable and detailed dataset for drug interactions, tissue distribution, and toxicity studies of Gelsemium alkaloids.


Assuntos
Citocromo P-450 CYP3A , Gelsemium , Alcaloides Indólicos , Animais , Gelsemium/química , Citocromo P-450 CYP3A/metabolismo , Alcaloides Indólicos/toxicidade , Distribuição Tecidual , Masculino , Camundongos , Cetoconazol/toxicidade , Cetoconazol/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Alcaloides
10.
Neurochem Res ; 49(7): 1806-1822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713437

RESUMO

Ischemic stroke presents a global health challenge, necessitating an in-depth comprehension of its pathophysiology and therapeutic strategies. While reperfusion therapy salvages brain tissue, it also triggers detrimental cerebral ischemia-reperfusion injury (CIRI). In our investigation, we observed the activation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in an oxygen-glucose deprivation/reoxygenation (OGD/R) model using HT22 cells (P < 0.05). This activation contributed to oxidative stress (P < 0.05), enhanced autophagy (P < 0.05) and cell death (P < 0.05) during CIRI. Silencing NCOA4 effectively mitigated OGD/R-induced damage (P < 0.05). These findings suggested that targeting NCOA4-mediated ferritinophagy held promise for preventing and treating CIRI. Subsequently, we substantiated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway effectively regulated the NCOA4-mediated ferritinophagy, by applying the cGAS inhibitor RU.521 and performing NCOA4 overexpression (P < 0.05). Suppressing the cGAS-STING pathway efficiently curtailed ferritinophagy (P < 0.05), oxidative stress (P < 0.05), and cell damage (P < 0.05) of CIRI, while NCOA4 overexpression could alleviate this effect (P < 0.05). Finally, we elucidated the specific molecular mechanism underlying the protective effect of the iron chelator deferoxamine (DFO) on CIRI. Our findings revealed that DFO alleviated hypoxia-reoxygenation injury in HT22 cells through inhibiting NCOA4-mediated ferritinophagy and reducing ferrous ion levels (P < 0.05). However, the protective effects of DFO were counteracted by cGAS overexpression (P < 0.05). In summary, our results indicated that the activation of the cGAS-STING pathway intensified cerebral damage during CIRI by inducing NCOA4-mediated ferritinophagy. Administering the iron chelator DFO effectively attenuated NCOA4-induced ferritinophagy, thereby alleviating CIRI. Nevertheless, the role of the cGAS-STING pathway in CIRI regulation likely involves intricate mechanisms, necessitating further validation in subsequent investigations.


Assuntos
Autofagia , Ferritinas , Coativadores de Receptor Nuclear , Traumatismo por Reperfusão , Coativadores de Receptor Nuclear/metabolismo , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Ferritinas/metabolismo , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico
11.
Sci Rep ; 14(1): 9711, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678041

RESUMO

Based on the system dynamics theory, this paper establishes an environmental mass event evolution model and explores the evolution law of mass events caused by environmental problems. From a methodological point of view, the mixed-strategy evolutionary game principle and dynamic punishment measures are combined, and simulation analysis is carried out by Anylogic software, and the results show that there is no stable evolutionary equilibrium solution for the two sides of the game in the traditional asymmetric mixed-strategy game model, and after adjusting the game payoff matrix and incorporating the dynamic punishment strategy, stable evolutionary equilibrium solutions appear in the evolutionary game model, and the system begins to tend to be stabilized. The process and conclusions of the simulation experiment provide methodological reference and theoretical support for the analysis of the evolution of environmental mass events.

12.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641409

RESUMO

The behavioral and neural effects of the endogenous release of acetylcholine following stimulation of the nucleus basalis (NB) of Meynert have been recently examined in two male monkeys (Qi et al., 2021). Counterintuitively, NB stimulation enhanced behavioral performance while broadening neural tuning in the prefrontal cortex (PFC). The mechanism by which a weaker mnemonic neural code could lead to better performance remains unclear. Here, we show that increased neural excitability in a simple continuous bump attractor model can induce broader neural tuning and decrease bump diffusion, provided neural rates are saturated. Increased memory precision in the model overrides memory accuracy, improving overall task performance. Moreover, we show that bump attractor dynamics can account for the nonuniform impact of neuromodulation on distractibility, depending on distractor distance from the target. Finally, we delve into the conditions under which bump attractor tuning and diffusion balance in biologically plausible heterogeneous network models. In these discrete bump attractor networks, we show that reducing spatial correlations or enhancing excitatory transmission can improve memory precision. Altogether, we provide a mechanistic understanding of how cholinergic neuromodulation controls spatial working memory through perturbed attractor dynamics in the PFC.


Assuntos
Memória de Curto Prazo , Modelos Neurológicos , Córtex Pré-Frontal , Memória Espacial , Córtex Pré-Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Acetilcolina/metabolismo , Masculino , Neurônios Colinérgicos/fisiologia , Neurônios Colinérgicos/efeitos dos fármacos , Núcleo Basal de Meynert/fisiologia
13.
Mater Horiz ; 11(8): 1975-1988, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38353589

RESUMO

Flexible tactile sensors have become important as essential tools for facilitating human and object interactions. However, the materials utilized for the electrodes of capacitive tactile sensors often cannot simultaneously exhibit high conductivity, low modulus, and strong adhesiveness. This limitation restricts their application on flexible interfaces and results in device failure due to mechanical mismatch. Herein, we report an ultra-low modulus, highly conductive, and adhesive elastomer and utilize it to fabricate a microstructure-coupled multifunctional flexible tactile sensor. We prepare a supramolecular conductive composite film (SCCF) as the electrode of the tactile sensor using a supramolecular deep eutectic solvent, polyvinyl alcohol (PVA) solution, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and MXene suspension. We employ a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) as the dielectric layer to fabricate capacitive sensors with an electrical double layer structure. Furthermore, we enhance the performance of the device by incorporating coupled pyramid and dome microstructures, which endow the sensor with multi-directional force detection. Our SCCF exhibits extremely high conductivity (reaching 710 S cm-1), ultra-low modulus (0.8 MPa), and excellent interface adhesion strength (>120 J m-2). Additionally, due to the outstanding conductivity and unique structure of the SCCF, it possesses remarkable electromagnetic shielding ability (>50 dB). Moreover, our device demonstrates a high sensitivity of up to 1756 kPa-1 and a wide working range reaching 400 kPa, combining these attributes with the requirements of an ultra-soft human-machine interface to ensure optimal contact between the sensor and interface materials. This innovative and flexible tactile sensor holds great promise and potential for addressing various and complex demands of human-machine interaction.

14.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293215

RESUMO

The behavioral and neural effects of the endogenous release of acetylcholine following stimulation of the Nucleus Basalis of Meynert (NB) have been recently examined (Qi et al. 2021). Counterintuitively, NB stimulation enhanced behavioral performance while broadening neural tuning in the prefrontal cortex (PFC). The mechanism by which a weaker mnemonic neural code could lead to better performance remains unclear. Here, we show that increased neural excitability in a simple continuous bump attractor model can induce broader neural tuning and decrease bump diffusion, provided neural rates are saturated. Increased memory precision in the model overrides memory accuracy, improving overall task performance. Moreover, we show that bump attractor dynamics can account for the nonuniform impact of neuromodulation on distractibility, depending on distractor distance from the target. Finally, we delve into the conditions under which bump attractor tuning and diffusion balance in biologically plausible heterogeneous network models. In these discrete bump attractor networks, we show that reducing spatial correlations or enhancing excitatory transmission can improve memory precision. Altogether, we provide a mechanistic understanding of how cholinergic neuromodulation controls spatial working memory through perturbed attractor dynamics in PFC.

15.
J Colloid Interface Sci ; 660: 608-616, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266342

RESUMO

The skin is the largest organ in the human body and serves vital functions such as sensation, thermal management, and protection. While electronic skin (E-skin) has made significant progress in sensory functions, achieving adaptive thermal management akin to human skin has remained a challenge. Drawing inspiration from squid skin, we have developed a hybrid electronic-photonic skin (hEP-skin) using an elastomer semi-embedded with aligned silver nanowires through interfacial self-assembly. With mechanically adjustable optical properties, the hEP-skin demonstrates adaptive thermal management abilities, warming in the range of +3.5°C for heat preservation and cooling in the range of -4.2°C for passive cooling. Furthermore, it exhibits an ultra-stable high electrical conductivity of âˆ¼4.5×104 S/cm, even under stretching, bending or torsional deformations over 10,000 cycles. As a proof of demonstration, the hEP-skin successfully integrates stretchable light-emitting electronic skin with adaptive thermal management photonic skin.


Assuntos
Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Prata , Pele , Condutividade Elétrica
16.
Biol Trace Elem Res ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277120

RESUMO

Cadmium (Cd) exposure is a persistent pollution problem, necessitating caution in using cadmium-expelling complexing agents. Currently, there is no targeted therapy to treat Cd poisoning. The thyroid gland is a major endocrine organ that directly regulates thyroid hormones involved in various physiological processes and is a target organ for Cd accumulation. Herein, the effects of Cd exposure on swine thyroid glands were investigated. Six-week-old male pigs were randomly divided into the Cd and control groups. The control group was fed a normal diet containing 0 mg Cd/kg, while the Cd group was fed a diet containing 20 mg Cd/kg (CdCl2) for 40 days. The regulation mechanism of phosphatase and tensin homolog (PTEN) microRNA-494-3p (miR-494-3p) was evaluated to determine the toxic effects of Cd exposure on free radicals' cleaner. Notably, heat shock proteins (HSPs) were triggered as defense agents against Cd. Cd exposure increased the enzyme activity of superoxide dismutase1(SOD1) and SOD2, catalase (CAT), and glutathione (GSH), and the endoplasmic reticulum stress in thyroid cells. Histopathological staining, RT-qPCR, and Western Blot assays were further employed to detect possible apoptosis and necroptosis of thyroid cells induced by Cd exposure. The assays revealed increased thyroid inflammatory injury, fibrosis, and apoptosis caused by Cd exposure. This study demonstrates the role of microRNAs in regulating Cd toxicity in pig thyroid tissue and provides evidence of Cd's negative effects. It further provides an assessment of the toxicological impact of Cd as an environmental endocrine disruptor (ED) that threatens public health and safety, which forms a basis for the development of Cd poisoning treatment therapies.

17.
Rev Cardiovasc Med ; 24(1): 24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39076869

RESUMO

Background: Many meta-analyses and randomized controlled trials (RCTs) on the use of Omega-3 supplements for cardiovascular disease (CVD) have come to different outcomes. Besides, previous meta-analyses have missed some key RCTs on this topic. Methods: PubMed, EMBASE, Cochrane Library and Web of Science were manually searched for eligible RCTs on Omega-3 polyunsaturated fatty acids (PUFA) use for CVD. Risk estimates of each relevant outcome were calculated as a hazard ratio (HR) with 95% confidence interval (95% CI) using the random-effects model. Subgroup analysis was conducted according to the main characteristics of the population, sensitivity analysis would be performed if there was significant heterogeneity among analyses on relevant outcomes. Statistical heterogeneity was assessed using chi-square tests and quantified using I-square statistics. Results: Nineteen eligible RCTs incorporating 116,498 populations were included. Omega-3 PUFA supplementation could not significantly improve the outcomes of major adverse cardiovascular events (MACE) (HR: 0.98, 95% CI: 0.91-1.06), myocardial infarction (MI) (HR: 0.86, 95% CI: 0.70-1.05), coronary heart disease (CHD) (HR: 0.90, 95% CI: 0.80-1.01), stroke (HR: 1.00, 95% CI: 0.91-1.10), SCD (sudden cardiac death) (HR: 0.90, 95% CI: 0.80-1.02), all-cause mortality (HR: 0.96, 95% CI: 0.89-1.04), hospitalization (HR: 0.99, 95% CI: 0.81-1.20), hospitalization for all heart disease (HR: 0.91, 95% CI: 0.83-1.00), hospitalization for heart failure (HR: 0.97, 95% CI: 0.91-1.04). Although omega-3 PUFA significantly reduced revascularization (HR: 0.90, 95% CI: 0.81-1.00) and cardiovascular mortality (CV mortality) (HR: 0.91, 95% CI: 0.85-0.97), risk for atrial fibrillation (AF) was also increased (HR: 1.56, 95% CI: 1.27-1.91). Subgroup analysis results kept consistent with the main results. Conclusions: Omega-3 PUFA supplementation could reduce the risk for CV mortality and revascularization, it also increased the AF incidence. No obvious benefits on other CVD outcomes were identified. Overall, potential CVD benefits and harm for AF should be balanced when using omega-3 PUFA for patients or populations at high risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA