Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Gen Comp Endocrinol ; 350: 114472, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373462

RESUMO

Heart development is a delicate and complex process regulated by coordination of various signaling pathways. In this study, we investigated the role of sox18 in heart development by modulating Wnt/ß-Catenin signaling pathways. Our spatiotemporal expression analysis revealed that sox18 is mainly expressed in the heart, branchial arch, pharyngeal arch, spinal cord, and intersegmental vessels at the tailbud stage of Xenopus tropicalis embryo. Overexpression of sox18 in the X. tropicalis embryos causes heart edema, while loss-of-function of sox18 can change the signal of developmental heart marker gata4 at different stages, suggesting that sox18 plays an essential role in the development of the heart. Knockdown of SOX18 in human umbilical vein endothelial cells suggests a link between Sox18 and ß-CATENIN, a key regulator of the Wnt signaling pathway. Sox18 negatively regulates islet1 and tbx3, the downstream factors of Wnt/ß-Catenin signaling, during the linear heart tube formation and the heart looping stage. Taken together, our findings highlight the crucial role of Sox18 in the development of the heart via inhibiting Wnt/ß-Catenin signaling.


Assuntos
Fatores de Transcrição SOXF , Proteínas de Xenopus , beta Catenina , Animais , Humanos , beta Catenina/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Via de Sinalização Wnt , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
EMBO Rep ; 25(2): 646-671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177922

RESUMO

The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning. Zinc Finger SWIM-Type Containing 4 (zswim4) is expressed in the Spemann-Mangold organizer at the onset of Xenopus gastrulation and is then enriched in the developing neuroectoderm at the mid-gastrula stages. Knockdown or knockout of zswim4 causes ventralization. Overexpression of zswim4 decreases, whereas knockdown of zswim4 increases the expression levels of ventrolateral mesoderm marker genes. Mechanistically, ZSWIM4 attenuates the BMP signal by reducing the protein stability of SMAD1 in the nucleus. Stable isotope labeling by amino acids in cell culture (SILAC) identifies Elongin B (ELOB) and Elongin C (ELOC) as the interaction partners of ZSWIM4. Accordingly, ZSWIM4 forms a complex with the Cul2-RING ubiquitin ligase and ELOB and ELOC, promoting the ubiquitination and degradation of SMAD1 in the nucleus. Our study identifies a novel mechanism that restricts BMP signaling in the nucleus.


Assuntos
Proteínas Morfogenéticas Ósseas , Proteínas de Transporte , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Organizadores Embrionários/metabolismo , Xenopus laevis/metabolismo , Padronização Corporal/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
3.
Gene Expr Patterns ; 50: 119345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844856

RESUMO

Peroxidase genes (Prdx) encode a family of antioxidant proteins, which can protect cells from oxidative damage by reducing various cellular peroxides. This study investigated the spatiotemporal expression patterns of gene members in this family during the early development of Xenopus tropicalis. Real-time quantitative PCR showed that all members of this gene family have a distinct temporal expression pattern during the early development of X. tropicalis embryos. Additionally, whole mount in situ hybridization revealed that individual prdx genes display differential expression patterns, with overlapping expression in lymphatic vessels, pronephros, proximal tubule, and branchial arches. This study provides a basis for further study of the function of the prdx gene family.


Assuntos
Desenvolvimento Embrionário , Proteínas de Xenopus , Animais , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Xenopus laevis/genética
4.
DNA Cell Biol ; 42(7): 399-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37347924

RESUMO

Circular RNAs (circRNAs) are generally formed by the back-splicing of precursor mRNA. Increasing evidence implicates the important role of circRNAs in cardiovascular diseases. However, the role of circ-insulin-like growth factor 1 receptor (circIGF1R) in cardiomyocyte (CM) proliferation remains unclear. Here, we investigated the potential role of the circIGF1R in the proliferation of CMs. We found that circIGF1R expression in heart tissues and primary CMs from adult mice was significantly lower than that in neonatal mice at postnatal 1 day (p1). Increased circIGF1R expression was detected in the injured neonatal heart at 0.5 and 1 days post-resection. circIGF1R knockdown significantly decreased the proliferation of primary CMs. Combined prediction software, luciferase reporter gene analysis, and quantitative real time-PCR (qPCR) revealed that circIGF1R interacted with miR-362-5p. A significant increase in miR-362-5p expression was detected in the adult heart compared with that in the neonatal heart. Further, heart injury significantly decreased the expression of miR-362-5p in neonatal mice. Treatment with miR-362-5p mimics significantly suppressed the proliferation of primary CMs, whereas knockdown of miR-362-5p promoted the CMs proliferation. Meanwhile, miR-362-5p silencing can rescue the proliferation inhibition of CMs induced by circIGF1R knockdown. Target prediction and qPCR validation revealed that miR-362-5p significantly inhibited the expression of Phf3 in primary CMs. In addition, decreased Phf3 expression was detected in adult hearts compared with neonatal hearts. Consistently, increased Phf3 expression was detected in injured neonatal hearts compared with that in sham hearts. Knockdown of Phf3 markedly repressed CMs proliferation. Taken together, these findings suggest that circIGF1R might contribute to cardiomyocyte proliferation by promoting Pfh3 expression by sponging miR-362-5p and provide an important experimental basis for the regulation of heart regeneration.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Camundongos , Miócitos Cardíacos , RNA Circular/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral
5.
Zool Res ; 44(3): 663-674, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37161653

RESUMO

The biological function of the novel zinc-finger SWIM domain-containing protein family (ZSWIM) during embryonic development remains elusive. Here, we conducted a genome-wide analysis to explore the evolutionary processes of the ZSWIM gene family members in mice, Xenopus tropicalis, zebrafish, and humans. We identified nine putative ZSWIM genes in the human and mouse genome, eight in the Xenopus genome, and five in the zebrafish genome. Based on multiple sequence alignment, three members, ZSWIM5, ZSWIM6, and ZSWIM8, demonstrated the highest homology across all four species. Using available RNA sequencing (RNA-seq) data, ZSWIM genes were found to be widely expressed across different tissues, with distinct tissue-specific properties. To identify the functions of the ZSWIM protein family during embryogenesis, we examined temporal and spatial expression patterns of zswim family genes in Xenopus embryos. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that each member had a distinct expression profile. Whole-mount in situ hybridization showed that both zswim1 and zswim3 were maternally expressed genes; zswim5 and zswim6 were expressed throughout embryogenesis and displayed dynamic expression in the brain, eyes, somite, and bronchial arch at the late tailbud stages; zswim7 was detected in the eye area; zswim8 showed a dynamic expression pattern during the tailbud stages, with expression detected in the brain, eyes, and somite; zswim9 was faintly expressed throughout embryonic development. This study provides a foundation for future research to delineate the functions of ZSWIM gene members.


Assuntos
Evolução Biológica , Peixe-Zebra , Feminino , Gravidez , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Xenopus/genética , Encéfalo , Dedos de Zinco/genética , Proteínas de Ligação a DNA
6.
Arterioscler Thromb Vasc Biol ; 43(6): 995-1014, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021573

RESUMO

BACKGROUND: Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. METHODS: Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. RESULTS: Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. CONCLUSIONS: The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Exossomos , MicroRNAs , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Privação do Sono/complicações , Privação do Sono/genética , Privação do Sono/metabolismo , Doenças Cardiovasculares/metabolismo , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo
7.
Exp Mol Med ; 55(3): 532-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36854772

RESUMO

Vascular calcification is a serious complication of hyperphosphatemia that causes cardiovascular morbidity and mortality. Previous studies have reported that plasmalemmal phosphate (Pi) transporters, such as PiT-1/2, mediate depolarization, Ca2+ influx, oxidative stress, and calcific changes in vascular smooth muscle cells (VSMCs). However, the pathogenic mechanism of mitochondrial Pi uptake in vascular calcification associated with hyperphosphatemia has not been elucidated. We demonstrated that the phosphate carrier (PiC) is the dominant mitochondrial Pi transporter responsible for high Pi-induced superoxide generation, osteogenic gene upregulation, and calcific changes in primary VSMCs isolated from rat aortas. Notably, acute incubation with high Pi markedly increased the protein abundance of PiC via ERK1/2- and mTOR-dependent translational upregulation. Genetic suppression of PiC prevented Pi-induced ERK1/2 activation, superoxide production, osteogenic differentiation, and vascular calcification of VSMCs in vitro and aortic rings ex vivo. Pharmacological inhibition of mitochondrial Pi transport using butyl malonate (BMA) or mersalyl abolished all pathologic changes involved in high Pi-induced vascular calcification. BMA or mersalyl also effectively prevented osteogenic gene upregulation and calcification of aortas from 5/6 subtotal nephrectomized mice fed a high-Pi diet. Our results suggest that mitochondrial Pi uptake via PiC is a critical molecular mechanism mediating mitochondrial superoxide generation and pathogenic calcific changes, which could be a novel therapeutic target for treating vascular calcification associated with hyperphosphatemia.


Assuntos
Hiperfosfatemia , Calcificação Vascular , Ratos , Camundongos , Animais , Hiperfosfatemia/induzido quimicamente , Hiperfosfatemia/complicações , Hiperfosfatemia/patologia , Células Cultivadas , Superóxidos/efeitos adversos , Osteogênese/genética , Mersalil , Fosfatos/efeitos adversos , Calcificação Vascular/etiologia , Calcificação Vascular/patologia , Proteínas de Transporte de Fosfato , Miócitos de Músculo Liso/metabolismo
8.
Cell Biosci ; 13(1): 29, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782288

RESUMO

BACKGROUND: Recently, it was reported that the adult X. tropicalis heart can regenerate in a nearly scar-free manner after injury via apical resection. Thus, a cardiac regeneration model in adult X. tropicalis provides a powerful tool for recapitulating a perfect regeneration phenomenon, elucidating the underlying molecular mechanisms of cardiac regeneration in an adult heart, and developing an interventional strategy for the improvement in the regeneration of an adult heart, which may be more applicable in mammals than in species with a lower degree of evolution. However, a noninvasive and rapid real-time method that can observe and measure the long-term dynamic change in the regenerated heart in living organisms to monitor and assess the regeneration and repair status in this model has not yet been established. RESULTS: In the present study, the methodology of echocardiographic assessment to characterize the morphology, anatomic structure and cardiac function of injured X. tropicalis hearts established by apex resection was established. The findings of this study demonstrated for the first time that small animal echocardiographic analysis can be used to assess the regeneration of X. tropicalis damaged heart in a scar-free perfect regeneration or nonperfect regeneration with adhesion manner via recovery of morphology and cardiac function. CONCLUSIONS: Small animal echocardiography is a reliable, noninvasive and rapid real-time method for observing and assessing the long-term dynamic changes in the regeneration of injured X. tropicalis hearts.

9.
Heliyon ; 9(1): e12683, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647346

RESUMO

Mesenchymal stem/stromal cells (MSCs) show tremendous potential for regenerative medicine due to their self-renewal, multi-differentiation and immunomodulatory capabilities. Largely studies had indicated conventional tissue-derived MSCs have considerable limited expandability and donor variability which hinders further application. Induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) have created exciting source for standardized cellular therapy. However, the cellular and molecular differences between iMSCs and the cognate tissue-derived MSCs remains poorly explored. In this study, we first successfully reprogrammed human umbilical cords-derived mesenchymal stem/stromal cells (UMSCs) into iPSCs by using the cocktails of mRNA. Subsequently, iPSCs were further differentiated into iMSCs in xeno-free induction medium. Then, iMSCs were compared with the donor matched UMSCs by assessing proliferative state, differentiation capability, immunomodulatory potential through immunohistochemical analysis, flow cytometric analysis, transcriptome sequencing analysis, and combine with coculture with immune cell population. The results showed that iMSCs exhibited high expression of MSCs positive-makers CD73, CD90, CD105 and lack expression of negative-maker cocktails CD34, CD45, CD11b, CD19, HLA-DR; also successfully differentiated into osteocytes, chondrocytes and adipocytes. Further, the iMSCs were similar with their parental UMSCs in cell proliferative state detected by the CCK-8 assay, and in cell rejuvenation state assessed by ß-Galactosidase staining and telomerase activity related mRNA and protein analysis. However, iMSCs exhibited similarity to resident MSCs in Homeobox (Hox) genes expression profile and presented better neural differentiation potential by activation of NESTIN related pathway. Moreover, iMSCs owned enhanced immunosuppression capacity through downregulation pools of pro-inflammatory factors, including IL6, IL1B etc. and upregulation anti-inflammatory factors NOS1, TGFB etc. signals. In summary, our study provides an attractive cell source for basic research and offers fundamental biological insight of iMSCs-based therapy.

10.
J Vis Exp ; (189)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468701

RESUMO

It is known that in adult mammals, the heart has lost its regenerative capacity, making heart failure one of the leading causes of death worldwide. Previous research has demonstrated the regenerative ability of the heart of the adult Xenopus tropicalis, an anuran amphibian with a diploid genome and a close evolutionary relationship with mammals. Additionally, studies have shown that following ventricular apex resection, the heart can regenerate without scarring in X. tropicalis. Consequently, these previous results suggest that X. tropicalis is an appropriate alternative vertebrate model for the study of adult heart regeneration. A surgical model of cardiac regeneration in the adult X. tropicalis is presented herein. Briefly, the frogs were anesthetized and fixed; then, a small incision was made with iridectomy scissors, penetrating the skin and pericardium. Gentle pressure was applied to the ventricle, and the apex of the ventricle was then cut out with scissors. Cardiac injury and regeneration were confirmed by histology at 7-30 days post resection (dpr). This protocol established an apical resection model in adult X. tropicalis, which can be employed to elucidate the mechanisms of adult heart regeneration.


Assuntos
Insuficiência Cardíaca , Traumatismos Cardíacos , Animais , Xenopus , Ventrículos do Coração , Pericárdio , Mamíferos
11.
Elife ; 112022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399125

RESUMO

Cardiovascular disease is the leading cause of death worldwide due to the inability of adult heart to regenerate after injury. N6-methyladenosine (m6A) methylation catalyzed by the enzyme methyltransferase-like 3 (Mettl3) plays an important role in various physiological and pathological bioprocesses. However, the role of m6A in heart regeneration remains largely unclear. To study m6A function in heart regeneration, we modulated Mettl3 expression in vitro and in vivo. Knockdown of Mettl3 significantly increased the proliferation of cardiomyocytes and accelerated heart regeneration following heart injury in neonatal and adult mice. However, Mettl3 overexpression decreased cardiomyocyte proliferation and suppressed heart regeneration in postnatal mice. Conjoint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq identified Fgf16 as a downstream target of Mettl3-mediated m6A modification during postnatal heart regeneration. RIP-qPCR and luciferase reporter assays revealed that Mettl3 negatively regulates Fgf16 mRNA expression in an m6A-Ythdf2-dependent manner. The silencing of Fgf16 suppressed the proliferation of cardiomyocytes. However, the overexpression of ΔFgf16, in which the m6A consensus sequence was mutated, significantly increased cardiomyocyte proliferation and accelerated heart regeneration in postnatal mice compared with wild-type Fgf16. Our data demonstrate that Mettl3 post-transcriptionally reduces Fgf16 mRNA levels through an m6A-Ythdf2-dependen pathway, thereby controlling cardiomyocyte proliferation and heart regeneration.


Cardiovascular diseases are one of the world's biggest killers. Even for patients who survive a heart attack, recovery can be difficult. This is because ­ unlike some amphibians and fish ­ humans lack the ability to produce enough new heart muscle cells to replace damaged tissue after a heart injury. In other words, the human heart cannot repair itself. Molecules known as messenger RNA (mRNA) carry the 'instructions' from the DNA inside the cell nucleus to its protein-making machinery in the cytoplasm of the cell. These messenger molecules can also be altered by different enzymes that attach or remove chemical groups. These modifications can change the stability of the mRNA, or even 'silence' it altogether by stopping it from interacting with the protein-making machinery, thus halting production of the protein it encodes. For example, a protein called Mettl3 can attach a methyl group to a specific part of the mRNA, causing a reversible mRNA modification known as m6A. This type of alteration has been shown to play a role in many conditions, including heart disease, but it has been unclear whether m6A could also be important for the regeneration of heart tissue. To find out more, Jiang, Liu, Chen et al. studied heart injury in mice of various ages. Newborn mice can regenerate their heart muscle for a short time, but adult mice lack this ability, which makes them a useful model to study heart disease. Analyses of the proteins and mRNAs in mouse heart cells confirmed that both Mettl3 and m6A-modified mRNAs were present. The amount of each also increased with age. Next, experiments in genetically manipulated mice revealed that removing Mettl3 greatly improved tissue repair after heart injury in both newborn and adult mice. In contrast, mouse hearts that produced abnormally high quantities of Mettl3 were unable to regenerate ­ even if the mice were young. Moreover, a detailed analysis of gene activity revealed that Mettl3 was suppressing heart regeneration by decreasing the production of a growth-promoting protein called FGF16. These results reveal a key biological mechanism controlling the heart's ability to repair itself after injury. In the future, Jiang et al. hope that Mettl3 can be harnessed for new, effective therapies to promote heart regeneration in patients suffering from heart disease.


Assuntos
Metiltransferases , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Metilação , Fatores de Transcrição/metabolismo , Proliferação de Células
12.
Front Cardiovasc Med ; 9: 967463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061561

RESUMO

Objective: Brain-derived neurotrophic factor (BDNF) and its receptor TrkB-T1 were recently found to be expressed in cardiomyocytes. However, the functional role of cardiomyocyte-derived BDNF in heart pathophysiology is not yet fully known. Recent studies revealed that BDNF-TrkB pathway plays a critical role to maintain integrity of cardiac structure and function, cardiac pathology and regeneration of myocardial infarction (MI). Therefore, the BDNF-TrkB pathway may be a novel target for myocardial pathophysiology in the adult heart. Approach and results: In the present study, we established a cardiomyocyte-derived BDNF conditional knockout mouse in which BDNF expression in developing cardiomyocytes is ablated under the control of the Myosin heavy chain 6 (MYH6) promoter. The results of the present study show that ablation of cardiomyocyte-derived BDNF during development does not impair survival, growth or reproduction; however, in the young adult heart, it causes cardiomyocyte death, degeneration of the myocardium, cardiomyocyte hypertrophy, left atrial appendage thrombosis, decreased cardiac function, increased cardiac inflammation and ROS activity, and metabolic disorders, leading to heart failure (HF) in the adult heart and eventually resulting in a decrease in the one-year survival rate. In addition, ablation of cardiomyocyte-derived BDNF during the developmental stage leads to exacerbation of cardiac dysfunction and poor regeneration after MI in adult hearts. Conclusion: Cardiomyocyte-derived BDNF is irreplaceable for maintaining the integrity of cardiac structure and function in the adult heart and regeneration after MI. Therefore, the BDNF-TrkB pathway will be a novel target for myocardial pathophysiology in the adult heart.

13.
J Cell Mol Med ; 26(20): 5135-5149, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36117396

RESUMO

The regulation of fibrotic activities is key to improving pathological remodelling post-myocardial infarction (MI). Currently, in the clinic, safe and curative therapies for cardiac fibrosis and improvement of the pathological fibrotic environment, scar formation and pathological remodelling post-MI are lacking. Previous studies have shown that miR-486 is involved in the regulation of fibrosis. However, it is still unclear how miR-486 functions in post-MI regeneration. Here, we first demonstrated that miR-486 targeting SRSF3/p21 mediates the senescence of cardiac myofibroblasts to improve their fibrotic activity, which benefits the regeneration of MI by limiting scar size and post-MI remodelling. miR-486-targeted silencing has high potential as a novel target to improve fibrotic activity, cardiac fibrosis and pathological remodelling.


Assuntos
MicroRNAs , Infarto do Miocárdio , Cicatriz/patologia , Fibrose , Humanos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miofibroblastos/patologia , Fatores de Processamento de Serina-Arginina/genética
14.
J Cell Mol Med ; 26(19): 5033-5043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36043452

RESUMO

Extracellular vesicles (EVs) are emerging as key players in intercellular communication. Few studies have focused on EV levels in subjects with sleep disorders. Here, we aimed to explore the role of acute sleep deprivation on the quantity and functionality of circulating EVs, and their tissue distribution. EVs were isolated by ultracentrifugation from the plasma of volunteers and animals undergoing one night of sleep deprivation. Arterio-venous shunt, FeCl3 thrombus test and thrombin-induced platelet aggregation assay were conducted to evaluate the in vivo and in vitro bioactivity of small EVs. Western blotting was performed to measure the expression of EV proteins. The fate and distribution of circulating small EVs were determined by intravital imaging. We found that one night of sleep deprivation triggers release of small EVs into the circulation in both healthy individuals and animals. Injection of sleep deprivation-liberated small EVs into animals increased thrombus formation and weight in thrombosis models. Also, sleep deprivation-liberated small EVs promoted platelet aggregation induced by thrombin. Mechanistically, sleep deprivation increased the levels of HMGB1 protein in small EVs, which play important roles in platelet activation. Furthermore, we found sleep deprivation-liberated small EVs are more readily localize in the liver. These data suggested that one night of sleep deprivation is a stress for small EV release, and small EVs released here may increase the risk of thrombosis. Further, small EVs may be implicated in long distance signalling during sleep deprivation-mediated adaptation processes.


Assuntos
Vesículas Extracelulares , Proteína HMGB1 , Trombose , Animais , Vesículas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Ativação Plaquetária , Privação do Sono , Trombina/metabolismo
15.
NPJ Regen Med ; 7(1): 33, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750775

RESUMO

Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.

16.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445344

RESUMO

Thyroid hormones, including 3,5,3'-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Cálcio/metabolismo , Mitocôndrias/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Tecido Adiposo Marrom/metabolismo , Animais , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
17.
NPJ Regen Med ; 6(1): 36, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188056

RESUMO

Cardiovascular disease is the leading cause of death in the world due to losing regenerative capacity in the adult heart. Frogs possess remarkable capacities to regenerate multiple organs, including spinal cord, tail, and limb, but the response to heart injury and the underlying molecular mechanism remains largely unclear. Here we demonstrated that cardiomyocyte proliferation greatly contributes to heart regeneration in adult X. tropicalis upon apex resection. Using RNA-seq and qPCR, we found that the expression of Fos-like antigen 1 (Fosl1) was dramatically upregulated in early stage of heart injury. To study Fosl1 function in heart regeneration, its expression was modulated in vitro and in vivo. Overexpression of X. tropicalis Fosl1 significantly promoted the proliferation of cardiomyocyte cell line H9c2. Consistently, endogenous Fosl1 knockdown suppressed the proliferation of H9c2 cells and primary cardiomyocytes isolated from neonatal mice. Taking use of a cardiomyocyte-specific dominant-negative approach, we show that blocking Fosl1 function leads to defects in cardiomyocyte proliferation during X. tropicalis heart regeneration. We further show that knockdown of Fosl1 can suppress the capacity of heart regeneration in neonatal mice, but overexpression of Fosl1 can improve the cardiac function in adult mouse upon myocardium infarction. Co-immunoprecipitation, luciferase reporter, and ChIP analysis reveal that Fosl1 interacts with JunB and promotes the expression of Cyclin-T1 (Ccnt1) during heart regeneration. In conclusion, we demonstrated that Fosl1 plays an essential role in cardiomyocyte proliferation and heart regeneration in vertebrates, at least in part, through interaction with JunB, thereby promoting expression of cell cycle regulators including Ccnt1.

18.
Life Sci ; 279: 119659, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34052293

RESUMO

AIMS: Limb ischaemia/reperfusion (LIR) occurs in various clinical conditions including critical limb ischaemia, abdominal aortic aneurysm, and traumatic arterial injury. Reperfusion of the acutely ischemic limb can lead to a systemic inflammation response and multiple organ dysfunction syndrome, further resulting in significant morbidity and mortality. Molecular hydrogen exhibits therapeutic activity for the treatment and prevention of many diseases. Our study investigated the possible therapeutic effects of hydrogen and its mechanism of action in a LIR-induced acute lung injury (ALI) model. MATERIALS AND METHODS: Limb ischaemia/-reperfusion model was established in mice. The hydrogen-saturated saline was administered by intraperitoneal injection. Protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO1) and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) was evaluated by immunohistochemistry staining and western blotting. Autophagy-related molecules were evaluated by western blotting. Malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by assay kits. Quantification of ceramides in lung was performed by high-performance liquid chromatography-tandem mass spectrometry. KEY FINDINGS: Molecular hydrogen exhibited a protective effect on the LIR-induced ALI model. Hydrogen decreased malondialdehyde and increased superoxide dismutase activity in lung tissues. Additionally, hydrogen activated Nrf2 signalling in lung tissues. Hydrogen could inhibit the upregulation of autophagy in the present rodent model. Furthermore, ceramide was accumulated in lung tissues because of LIR; however, hydrogen altered the accumulation status. SIGNIFICANCE: Molecular hydrogen was found to be therapeutically effective in the LIR-induced ALI model; the mechanisms of action included modulation of antioxidation and autophagy.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Extremidades/fisiopatologia , Hidrogênio/farmacologia , Traumatismo por Reperfusão/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Heme Oxigenase-1/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Superóxido Dismutase/metabolismo
19.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33999995

RESUMO

The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin 2 (Fermt2) is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or with CRISPR/Cas9 techniques in Xenopus embryos severely inhibit the specification of the NC. Moreover, integrin-binding-deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating the FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Crista Neural/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Proteínas de Membrana/genética , Morfolinos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/genética
20.
Biochem Biophys Res Commun ; 555: 190-195, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33823365

RESUMO

Primary cilia are microtubule-based organelles that are involved in sensing micro-environmental cues and regulating cellular homeostasis via triggering signaling cascades. Hypoxia is one of the most common environmental stresses that organ and tissue cells may often encounter during embryogenesis, cell differentiation, infection, inflammation, injury, cerebral and cardiac ischemia, or tumorigenesis. Although hypoxia has been reported to promote or inhibit primary ciliogenesis in different tissues or cultured cell lines, the role of hypoxia in ciliogenesis is controversial and still unclear. Here we investigated the primary cilia change under cobalt chloride (CoCl2)-simulated hypoxia in immortalized human retina pigment epithelial-1 (hTERT RPE-1) cells. We found CoCl2 treatment elongated primary cilia in a time- and dose-dependent manner. The prolonged cilia recovered back to near normal length when CoCl2 was washed out from the cell culture medium. Under CoCl2-simulated hypoxia, the protein expression levels of HIF-1/2α and acetylated-α-tubulin (cilia marker) were increased, while the protein expression level of Rabaptin-5 is decreased during hypoxia. Taken together, our results suggest that hypoxia may elongate primary cilia by downregulating Rabaptin-5 involved endocytosis. The coordination between endocytosis and ciliogenesis may be utilized by cells to adapt to hypoxia.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cobalto/toxicidade , Epitélio Pigmentado da Retina/citologia , Hipóxia Celular/fisiologia , Linhagem Celular Transformada , Cobalto/administração & dosagem , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Prolil Hidroxilases/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Telomerase/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA