Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2311305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270280

RESUMO

Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.

2.
Small ; 20(4): e2303115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726245

RESUMO

Phosphorene is a 2D phosphorus atomic layer arranged in a honeycomb lattice like graphene but with a buckled structure. Since its exfoliation from black phosphorus in 2014, phosphorene has attracted tremendous research interest both in terms of synthesis and fundamental research, as well as in potential applications. Recently, significant attention in phosphorene is motivated not only by research on its fundamental physical properties as a novel 2D semiconductor material, such as tunable bandgap, strong in-plane anisotropy, and high carrier mobility, but also by the study of its wide range of potential applications, such as electronic, optoelectronic, and spintronic devices, energy conversion and storage devices. However, a lot of avenues remain to be explored including the fundamental properties of phosphorene and its device applications. This review recalls the current state of the art of phosphorene and its derivatives, touching upon topics on structure, synthesis, characterization, properties, stability, and applications. The current needs and future opportunities for phosphorene are also discussed.

3.
ACS Nano ; 17(24): 25679-25688, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38054480

RESUMO

While organic-inorganic hybrid perovskites are emerging as promising materials for next-generation photovoltaic applications, the origins and pathways of perovskite instability remain speculative. In particular, the degradation of perovskite surfaces by ambient water is a crucial subject for determining the long-term viability of perovskite-based solar cells. Here, we conducted surface characterization and atomic-scale analysis of the reaction mechanisms for methylammonium lead bromide (MA(CH3NH3)PbBr3) single crystals using ambient-pressure atomic force microscopy (AP-AFM) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) in environments ranging from ultrahigh vacuum to 0.01 mbar of water vapor. MAPbBr3 single crystals, grown by a solution process, were mechanically cleaved under UHV conditions to obtain an atomically clean surface. Consecutive topography and friction force measurements in low-pressure water (pwater ≈ 10-5 mbar) revealed the formation of degraded patches, one atomic layer deep, gradually increasing their coverage until the surface was entirely covered at a water exposure of 4.7 × 104 langmuir (L). At the perimeters of these degraded patches, a higher friction coefficient was observed, along with an interstitial step height, which we attribute to a structure equivalent to that of the MA-Br terminated surface. Combined with NAP-XPS analysis, our results demonstrate that water vapor induces the dissociation of surface methylammonium ligands, eventually resulting in the depletion of the surface MA and the full coverage of hydrocarbon species after exposure to 0.01 mbar of water vapor.

4.
Nat Commun ; 14(1): 6120, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777526

RESUMO

The long-term stability of perovskite solar cells remains one of the most important challenges for the commercialization of this emerging photovoltaic technology. Here, we adopt a non-noble metal/metal oxide/polymer multiple-barrier to suppress the halide consumption and gaseous perovskite decomposition products release with the chemically inert bismuth electrode and Al2O3/parylene thin-film encapsulation, as well as the tightly closed system created by the multiple-barrier to jointly suppress the degradation of perovskite solar cells, allowing the corresponding decomposition reactions to reach benign equilibria. The resulting encapsulated formamidinium cesium-based perovskite solar cells with multiple-barrier maintain 90% of their initial efficiencies after continuous operation at 45 °C for 5200 h and 93% of their initial efficiency after continuous operation at 75 °C for 1000 h under 1 sun equivalent white-light LED illumination.

5.
Small ; 19(37): e2301755, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144439

RESUMO

Heterogeneous catalytic mediators have been proposed to play a vital role in enhancing the multiorder reaction and nucleation kinetics in multielectron sulfur electrochemistry. However, the predictive design of heterogeneous catalysts is still challenging, owing to the lack of in-depth understanding of interfacial electronic states and electron transfer on cascade reaction in Li-S batteries. Here, a heterogeneous catalytic mediator based on monodispersed titanium carbide sub-nanoclusters embedded in titanium dioxide nanobelts is reported. The tunable catalytic and anchoring effects of the resulting catalyst are achieved by the redistribution of localized electrons caused by the abundant built-in fields in heterointerfaces. Subsequently, the resulting sulfur cathodes deliver an areal capacity of 5.6 mAh cm-2 and excellent stability at 1 C under sulfur loading of 8.0 mg cm-2 . The catalytic mechanism especially on enhancing the multiorder reaction kinetic of polysulfides is further demonstrated via operando time-resolved Raman spectroscopy during the reduction process in conjunction with theoretical analysis.

6.
Adv Mater ; 35(21): e2300169, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36884267

RESUMO

Further enhancing the operational lifetime of inverted-structure perovskite solar cells (PSCs) is crucial for their commercialization, and the design of hole-selective contacts at the illumination side plays a key role in operational stability. In this work, the self-anchoring benzo[rst]pentaphene (SA-BPP) is developed as a new type of hole-selective contact toward long-term operationally stable inverted PSCs. The SA-BPP molecule with a graphene-like conjugated structure shows a higher photostability and mobility than that of the frequently-used triphenylamine and carbazole-based hole-selective molecules. Besides, the anchoring groups of SA-BPP promote the formation of a large-scale uniform hole contact on ITO substrate and efficiently passivate the perovskite absorbers. Benefiting from these merits, the champion efficiencies of 22.03% for the small-sized cells and 17.08% for 5 × 5 cm2 solar modules on an aperture area of 22.4 cm2 are achieved based on this SA-BPP contact. Also, the SA-BPP-based device exhibits promising operational stability, with an efficiency retention of 87.4% after 2000 h continuous operation at the maximum power point under simulated 1-sun illumination, which indicates an estimated T80 lifetime of 3175 h. This novel design concept of hole-selective contacts provides a promising strategy for further improving the PSC stability.

7.
Inorg Chem ; 62(14): 5408-5414, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36974353

RESUMO

All-inorganic CsPbI2Br with outstanding thermal stability and excellent photoelectric properties is considered as a promising candidate for photovoltaic applications. However, the efficiency of CsPbI2Br perovskite solar cells (PSCs) is still much lower than that of their organic-inorganic hybrid counterparts or CsPbI3-based devices. Herein, we obtained an optimized CsPbI2Br PSC (0.09 cm2) with a champion efficiency of 17.38% and a record fill factor of 83.6% by introducing potassium anthraquinone-1,8-disulfonate (DAD) in the precursor solution. The synergistic effect between the electronegative functional groups and K+ ions in the DAD structure can not only effectively regulate the crystallization growth process to improve the crystalline quality and stability of photo-active CsPbI2Br but also optimize the energy level alignment and passivate the defects to improve the carrier transport properties. The efficiency of the corresponding large-area device (5 cm × 5 cm with an active area of 19.25 cm2) reached 13.20%. Moreover, the optimized CsPbI2Br PSC exhibited negligible hysteresis and enhanced long-term storage stability as well as thermal stability. Our method produces more stable photo-active CsPbI2Br with excellent photoelectric properties for industrial applications or perovskite/silicon tandem cells.

8.
RSC Adv ; 12(33): 21574-21581, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975053

RESUMO

We present an efficient and easy synthesis method for incorporating organocatalytic moieties into Zr-metal organic frameworks (Zr-MOFs). The catalytic activity and selectivity of the new chiral catalysts were improved by adjusting the aperture of the MOF cavities. The hole size of the Zr-MOF was modulated by adding acid and replacing bridge ligands during synthesis. The difunctional chiral units of amino acid-thiourea are anchored onto the Zr-MOF by a mild synthesis method from an isothiocyanate intermediate which could effectively avoid the racemization of chiral moieties in the synthesis process. By means of specific surface area measurement (BET), scanning electron microscopy (SEM) and powder X-ray Diffraction (PXRD), it was confirmed that Zr-MOFs with different pore sizes were synthesized without breaking the basic octahedral structure of the MOF. Finally, good yields (up to 83%) and ee values (up to 73%) were achieved with the new heterogeneous catalysts in 48 hours for the aldol reaction of 4-nitrobenzaldehyde with acetone. By contrast, using the catalyst support without modulating the synthesis, the yield (30%) and the ee-value (26%) were both low. Experiments have confirmed the important influence on the reaction selectivity of providing a suitable reaction environment by controlling the aperture of MOF cavities.

9.
Nanomicro Lett ; 14(1): 99, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394568

RESUMO

Lead-free tin perovskite solar cells (PSCs) have undergone rapid development in recent years and are regarded as a promising eco-friendly photovoltaic technology. However, a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking. In the present study, a formamidinium tin iodide (FASnI3) perovskite absorber with a vertical Sn2+ gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites. Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn2+ content from the bottom to the top in this heterogeneous FASnI3 film, which generates an additional electric field to prevent the trapping of photo-induced electrons and holes. Consequently, the Sn2+-gradient FASnI3 absorber exhibits a promising efficiency of 13.82% for inverted tin PSCs with an open-circuit voltage increase of 130 mV, and the optimized cell maintains over 13% efficiency after continuous operation under 1-sun illumination for 1,000 h.

10.
Angew Chem Int Ed Engl ; 61(5): e202112352, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34647403

RESUMO

Metal halide perovskite materials (MHPMs) have attracted significant attention because of their superior optoelectronic properties and versatile applications. The power conversion efficiency of MHPM solar cells (PSCs) has skyrocketed to 25.5 %. Although the performance of PSCs is already competitive, several important challenges still need to be solved to realize commercial applications. A thorough understanding of surface atomic structures and structure-property relationships is at the heart of these remaining issues. Scanning tunneling microscopy (STM) and spectroscopy (STS) can be used to characterize the surface properties of MHPMs, which can offer crucial insights into MHPMs at the atomic scale. This Review summarizes recent progress in STM and STS studies on MHPMs, with a focus on the surface properties. We provide understanding from the comparative perspective of several different MHPMs. We also highlight a series of novel phenomena observed by STM and STS. Finally, we outline a few research topics of primary importance for future studies.

11.
J Am Chem Soc ; 143(47): 19711-19718, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792336

RESUMO

The spectral instability issue is a challenge in blue perovskite light-emitting diodes (PeLEDs). Dion-Jacobson (DJ) phase perovskites are promising alternatives to achieve high-quality blue PeLEDs. However, the current exploration of DJ phase perovskites is focused on symmetric divalent cations, and the corresponding efficiency of blue PeLEDs is still inferior to that of green and red ones. In this work, we report a new type of DJ phase CsPb(Br/Cl)3 perovskite via introduction of an asymmetric molecular configuration as the organic spacer cation in perovskites. The primary and tertiary ammonium groups on the asymmetric cations bridge with the lead halide octahedra forming the DJ phase structures. Stable photoluminescence spectra were demonstrated in perovskite films owing to the suppressed halide segregation. Meanwhile, the radiative recombination efficiency of charges is improved significantly as a result of the confinement effects and passivation of charge traps. Finally, we achieved an external quantum efficiency of 2.65% in blue PeLEDs with stable spectra emission under applied bias voltages. To our best knowledge, this is the first report of asymmetric cations used in PeLEDs, which provides a facile solution to the halide segregation issue in PeLEDs.

12.
ACS Nano ; 15(9): 14813-14821, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583469

RESUMO

Metal halide perovskites (MHPs) have become a major topic of research in thin film photovoltaics due to their advantageous optoelectronic properties. These devices typically have the MHP absorber layer sandwiched between two charge selective layers (CSLs). The interfaces between the perovskite layer and these CSLs are potential areas of higher charge recombination. Understanding the nature of these interfaces is key for device improvement. Additionally, non-stoichiometric perovskite films are expected to strongly impact the interfacial properties. In this study, the interface between CH3NH3PbI3 (MAPbI3) and copper phthalocyanine (CuPc), a hole transport layer (HTL), is studied at the atomic scale. We use scanning tunneling microscopy (STM) combined with density functional theory (DFT) predictions to show that CuPc deposited on MAPbX3 (X = I,Br) forms a self-assembled layer consistent with the α-polymorph of CuPc. Additionally, STM images show a distinctly different adsorption orientation for CuPc on non-perovskite domains of the thin film samples. These findings highlight the effect of non-stoichiometric films on the relative orientation at the MHP/HTL interface, which may affect interfacial charge transport in a device. Our work provides an atomic scale view of the MHP/CuPc interface and underscores the importance of understanding interfacial structures and the effect that the film stoichiometry can have on interfacial properties.

13.
ChemSusChem ; 14(20): 4354-4376, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34424613

RESUMO

Perovskite solar cells (PSCs) are a promising third-generation photovoltaic (PV) technology developed rapidly in recent years. Further improvement of their power conversion efficiency is focusing on reducing the non-radiative charge recombination induced by the defects in metal halide perovskites. So far, defect passivation by the organic small molecule has been considered as a promising approach for boosting the PSC performance owing to their large structure flexibility adapting to passivating variable kinds of defect states and perovskite compositions. Here, the recent progress of defect passivation toward efficient and stable PSCs was reviewed from the viewpoint of molecular structure design and device performance. To comprehensively reveal the structure-performance correlation of passivation molecules, it was separately discussed how the functional groups, organic frameworks, and side chains affect the corresponding PV parameters of PSCs. Finally, a guideline was provided for researchers to select more suitable passivation agents, and a perspective was given on future trends in development of passivation strategies.

14.
Nat Commun ; 12(1): 4738, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362896

RESUMO

Rational design of heterostructures opens up new opportunities as an ideal catalyst system for lithium polysulfides conversion in lithium-sulfur battery. However, its traditional fabrication process is complex, which makes it difficult to reasonably control the content and distribution of each component. In this work, to rationally design the heterostructure, the atomic layer deposition is utilized to hybridize the TiO2-TiN heterostructure with the three-dimensional carbon nanotube sponge. Through optimizing the deposited thickness of TiO2 and TiN layers and adopting the annealing post-treatment, the derived coaxial sponge with uniform TiN-TiO2 heterostructure exhibits the best catalytic ability. The corresponding lithium-sulfur battery shows enhanced electrochemical performance with high specific capacity of 1289 mAh g-1 at 1 C and capacity retention of 85% after 500 cycles at 2 C. Furthermore, benefiting from the highly porous structure and interconnected conductive pathways from the sponge, its areal capacity reaches up to 21.5 mAh cm-2.

15.
Nanomicro Lett ; 13(1): 152, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232444

RESUMO

Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided.

16.
Nanomicro Lett ; 13(1): 155, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244883

RESUMO

Tin dioxide (SnO2) has been demonstrated as one of the promising electron transport layers for high-efficiency perovskite solar cells (PSCs). However, scalable fabrication of SnO2 films with uniform coverage, desirable thickness and a low defect density in perovskite solar modules (PSMs) is still challenging. Here, we report preparation of high-quality large-area SnO2 films by chemical bath deposition (CBD) with the addition of KMnO4. The strong oxidizing nature of KMnO4 promotes the conversion from Sn(II) to Sn(VI), leading to reduced trap defects and a higher carrier mobility of SnO2. In addition, K ions diffuse into the perovskite film resulting in larger grain sizes, passivated grain boundaries, and reduced hysteresis of PSCs. Furthermore, Mn ion doping improves both the crystallinity and the phase stability of the perovskite film. Such a multifunctional interface engineering strategy enabled us to achieve a power conversion efficiency (PCE) of 21.70% with less hysteresis for lab-scale PSCs. Using this method, we also fabricated 5 × 5 and 10 × 10 cm2 PSMs, which showed PCEs of 15.62% and 11.80% (active area PCEs are 17.26% and 13.72%), respectively. For the encapsulated 5 × 5 cm2 PSM, we obtained a T80 operation lifetime (the lifespan during which the solar module PCE drops to 80% of its initial value) exceeding 1000 h in ambient condition.

17.
Small ; 17(30): e2100244, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160145

RESUMO

An ideal anti-counterfeiting label not only needs to be unclonable and accurate but also must consider cost and efficiency. But the traditional physical unclonable function (PUF) recognition technology must match all the images in a database one by one. The matching time increases with the number of samples. Here, a new kind of PUF anti-counterfeiting label is introduced with high modifiability, low reagent cost (2.1 × 10-4 USD), simple and fast authentication (overall time 12.17 s), high encoding capacity (2.1 × 10623 ), and its identification software. All inorganic perovskite nanocrystalline films with clonable micro-profile and unclonable micro-texture are prepared by laser engraving for lyophilic patterning, liquid strip sliding for high throughput droplet generation, and evaporative self-assembling for thin film deposition. A variety of crystal film profile shapes can be used as "specificator" for image recognition, and the verification time of recognition technology based on this divide-and-conquer strategy can be decreased by more than 20 times.

18.
Science ; 372(6548): 1327-1332, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140385

RESUMO

Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide-templated crystallization strategy is developed for printing formamidinium (FA)-cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die-printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.

19.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33931458

RESUMO

Perovskite solar cells have emerged as one of the most promising thin-film photovoltaic (PV) technologies and have made a strong debut in the PV field. However, they still face difficulties with up-scaling to module-level devices and long-term stability issue. Here, we report the use of a room-temperature nonvolatile Lewis base additive, diphenyl sulfoxide(DPSO), in formamidinium-cesium (FACs) perovskite precursor solution to enhance the nucleation barrier and stabilize the wet precursor film for the scalable fabrication of uniform, large-area FACs perovskite films. With a parallel-interconnected module design, the resultant solar module realized a certified quasi-stabilized efficiency of 16.63% with an active area of 20.77 cm2 The encapsulated modules maintained 97 and 95% of their initial efficiencies after 10,000 and 1187 hours under day/night cycling and 1-sun equivalent white-light light-emitting diode array illumination with maximum power point tracking at 50°C, respectively.

20.
Light Sci Appl ; 10(1): 68, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790230

RESUMO

Grain boundaries in organic-inorganic halide perovskite solar cells (PSCs) have been found to be detrimental to the photovoltaic performance of devices. Here, we develop a unique approach to overcome this problem by modifying the edges of perovskite grain boundaries with flakes of high-mobility two-dimensional (2D) materials via a convenient solution process. A synergistic effect between the 2D flakes and perovskite grain boundaries is observed for the first time, which can significantly enhance the performance of PSCs. We find that the 2D flakes can conduct holes from the grain boundaries to the hole transport layers in PSCs, thereby making hole channels in the grain boundaries of the devices. Hence, 2D flakes with high carrier mobilities and short distances to grain boundaries can induce a more pronounced performance enhancement of the devices. This work presents a cost-effective strategy for improving the performance of PSCs by using high-mobility 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA