Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 339: 122737, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838313

RESUMO

Alga-bacterium interaction can improve wastewater treatment efficiency. To unravel the mystery of the interaction between microalgae and bacteria in wastewater, mono-cultures and co-cultures of Chlorella vulgaris and native bacteria in pretreated biochemical wastewater from landfill leachate were investigated. The results showed that the microalgae selected dominant commensal bacteria, creating a further reduction in species richness for the co-culture, which in turn aids in the dominant commensal bacteria's survival, thereby enhancing algal and bacterial metabolic activity. Strikingly, the lipid productivity of Chlorella in co-culture - namely 41.5 mg/L·d - was 1.4 times higher than in algal monoculture. Additionally, pollutant removal was enhanced in co-cultures, attributed to the bacterial community associated with pollutants' degradation. Furthermore, this study provides an important advance towards observations on the migration and transformation pathways of nutrients and metals, and bridges the gap in algal-bacterial synergistic mechanisms in real wastewater, laying the theoretical foundation for improving wastewater treatment.


Assuntos
Chlorella vulgaris , Microalgas , Águas Residuárias , Biomassa , Microalgas/metabolismo , Bactérias , Lipídeos
2.
Chemosphere ; 313: 137473, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36481174

RESUMO

Improving knowledge of the alga-bacterium interaction can promote the wastewater treatment. The untreated marine biopharmaceutical wastewater (containing native bacteria) was used directly for culturing microalgae. Unlike previous studies on specific bacteria in algal-bacterial co-culture systems, the effect of native bacteria in wastewater on microalgae growth was investigated in this study. The results showed that the coexistence of native bacteria greatly promoted the microalgae growth, ultimately producing biomass of 0.64 g/L and biomass productivity of 56.18 mg/L·d. Moreover, the lipid accumulation in the algae + bacteria group was 1.31 and 1.13 times higher than those of BG11 and pure algae, respectively, mainly attributed to the fact that bacteria provided a good environment for microalgae growth by using extracellular substances released from microalgae for their own growth, and providing micromolecules of organic matter and other required elements to microalgae. This study would lay the theoretical foundation for improving biopharmaceutical wastewater treatment.


Assuntos
Produtos Biológicos , Microalgas , Scenedesmus , Purificação da Água , Águas Residuárias , Bactérias , Lipídeos , Biomassa , Biocombustíveis
3.
Environ Sci Pollut Res Int ; 28(48): 69190-69199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34291414

RESUMO

To investigate the short-term effects of ambient air pollution and meteorological factors on daily tuberculosis (TB), semi-parametric generalized additive model was used to assess the impacts of ambient air pollutants and meteorological factors on daily TB case from 2005 to 2010 in Chengguan District, Lanzhou, China. Then a non-stratification parametric model and a stratification parametric model were applied to study the interactive effect of air pollutants and meteorological factors on daily TB. The results show that sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with aerodynamic diameter less than 10µm (PM10) were positively correlated with daily TB case; the excess risk (ER) and 95% confidence interval (CI) were 1.79% (0.40%, 3.20%), 3.86% (1.81%, 5.96%), and 0.32% (0.02%, 0.62%), respectively. Daily TB case was positively correlated with maximum temperature, minimum temperature, average temperature, vapor pressure, and relative humidity, but negatively correlated with atmospheric pressure, wind speed, and sunshine duration. The association with average temperature was the strongest, whose ER and 95% CI were 4.43% (3.15%, 5.72%). In addition, there were significant interaction effects between air pollutants and meteorological factors on daily TB case.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Tuberculose , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Humanos , Conceitos Meteorológicos , Material Particulado/análise , Tuberculose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA