Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 276: 116729, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39088998

RESUMO

Soluble transforming growth factor beta receptor 3 (sTGFBR3) antagonist is a new focus in the research and development of Alzheimer's disease (AD) drugs. Our previous studies have identified sTGFBR3 as a promising new target for AD, with few targeted antagonists identified. In this study, we performed structural modeling of sTGFBR3 using AlphaFold2, followed by high-throughput virtual screening and surface plasmon resonance assays. which collectively identified Xanthone as potential compounds for targeting sTGFBR3. After optimizing the sTGFBR3-Xanthone complex using molecular dynamics (MD) simulations, we prepared a series of novel Xanthone derivatives and evaluated their anti-inflammatory activity, toxicity, and structure-activity relationship in BV2 cell model induced by lipopolysaccharides (LPS) or APP/PS1/tau mouse brain extract (BE). Several derivatives with the most potent anti-inflammatory activity were tested for blood-brain barrier permeability and sTGFBR3 affinity. Derivative P24, selected for its superior properties, was further evaluated in vitro. The results indicated that P24 increased the activation of TGF-ß signaling and decreased the activation of IκBα/NF-κB signaling by targeting sTGFBR3, thereby regulating the inflammation-phagocytosis balance in microglia. Moreover, the low acute toxicity, long half-life, and low plasma clearance of P24 suggest that it can be sustained in vivo. This property may render P24 a more effective treatment modality for chronic diseases, particularly AD. The study demonstrates P24 serve as potential novel candidates for the treatment of AD via antagonizing sTGFBR3.


Assuntos
Doença de Alzheimer , Xantonas , Xantonas/química , Xantonas/farmacologia , Xantonas/síntese química , Animais , Humanos , Camundongos , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Camundongos Endogâmicos C57BL , Masculino
2.
Glia ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137117

RESUMO

Alzheimer's disease (AD) is a major cause of progressive dementia characterized by memory loss and progressive neurocognitive dysfunction. However, the molecular mechanisms are not fully understood. To elucidate the molecular mechanism contributing to AD, an integrated analytical workflow was deployed to identify pivotal regulatory target within the RNA-sequencing (RNA-seq) data of the temporal cortex from AD patients. Soluble transforming growth factor beta receptor 3 (sTGFBR3) was identified as a critical target in AD, which was abnormally elevated in AD patients and AD mouse models. We then demonstrated that sTGFBR3 deficiency restored spatial learning and memory deficits in amyloid precursor protein (APP)/PS1 and streptozotocin (STZ)-induced neuronal impairment mice after its expression was disrupted by a lentiviral (LV) vector expressing shRNA. Mechanistically, sTGFBR3 deficiency augments TGF-ß signaling and suppressing the NF-κB pathway, thereby reduced the number of disease-associated microglia (DAMs), inhibited proinflammatory activity and increased the phagocytic activity of DAMs. Moreover, sTGFBR3 deficiency significantly mitigated acute neuroinflammation provoked by lipopolysaccharide (LPS) and alleviated neuronal dysfunction induced by STZ. Collectively, these results position sTGFBR3 as a promising candidate for therapeutic intervention in AD.

3.
Curr Pharm Des ; 30(7): 552-563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362698

RESUMO

BACKGROUND: Recent studies have suggested that abnormal microglial hyperactivation has an important role in the progression of Alzheimer's disease (AD). sTGFBR3 (a shed extracellular domain of the transforming growth factor type III receptor) is a newly identified target of microglia polarization dysregulation, whose overexpression can cause abnormal accumulation of transforming growth factor ß1 (TGF-ß1), promoting Aß, tau, and neuroinflammatory pathology. OBJECTIVE: The objective of this study is to develop and validate a new cell model overexpressing sTGFBR3 for studying AD in vitro. METHODS: BV2 cells (a microglial cell derived from C57/BL6 murine) were used as a cell model. Cells were then treated with different concentrations of lipopolysaccharide (LPS) (0, 1, or 0.3 µg/mL) for 12, 24, or 48h and then with or without sodium pervanadate (100 µM) for 30 min. Next, the effect surface optimization method was used to determine optimal experimental conditions. Finally, the optimized model was used to assess the effect of ZQX series compounds and vasicine on cell viability and protein expression. Expression of TGFBR3 and TNF-α was assessed using Western blot. MTT assay was used to assess cell viability, and enzyme- linked immunosorbent assay (ELISA) was employed to evaluate extracellular TGF-ß1 and sTGFBR3. RESULTS: LPS (0.3 µg/mL) treatment for 11 h at a cell density of 60% and pervanadate concentration (100 µM) incubation for 30 min were the optimal experimental conditions for increasing membrane protein TGFBR3 overexpression, as well as extracellular sTGFBR3 and TGF-ß1. Applying ZQX-5 and vasicine reversed this process by reducing extracellular TGF-ß1, promoting the phosphorylation of Smad2/3, a protein downstream of TGF-ß1, and inhibiting the release of the inflammatory factor TNF-α. CONCLUSION: This new in vitro model may be a useful cell model for studying Alzheimer's disease in vitro.


Assuntos
Doença de Alzheimer , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
Neuropharmacology ; 232: 109525, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004752

RESUMO

Since Alzheimer's disease (AD) is a complex and multifactorial neuropathology, the discovery of multi-targeted inhibitors has gradually demonstrated greater therapeutic potential. Neurofibrillary tangles (NFTs), the main neuropathologic hallmarks of AD, are mainly associated with hyperphosphorylation of the microtubule-associated protein Tau. The overexpression of GSK3ß and DYRK1A has been recognized as an important contributor to hyperphosphorylation of Tau, leading to the strategy of using dual-targets inhibitors for the treatment of this disorder. ZDWX-12 and ZDWX-25, as harmine derivatives, were found good inhibition on dual targets in our previous study. Here, we firstly evaluated the inhibition effect of Tau hyperphosphorylation using two compounds by HEK293-Tau P301L cell-based model and okadaic acid (OKA)-induced mouse model. We found that ZDWX-25 was more effective than ZDWX-12. Then, based on comprehensively investigations on ZDWX-25 in vitro and in vivo, 1) the capability of ZDWX-25 to show a reduction in phosphorylation of multiple Tau epitopes in OKA-induced neurodegeneration cell models, and 2) the effect of reduction on NFTs by 3xTg-AD mouse model under administration of ZDWX-25, an orally bioavailable, brain-penetrant dual-targets inhibitor with low toxicity. Our data highlight that ZDWX-25 is a promising drug for treating AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Proteínas tau/metabolismo , Fosforilação , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Ácido Okadáico/uso terapêutico , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA