Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nat Commun ; 15(1): 4113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750029

RESUMO

Stretchable phosphorescence materials potentially enable applications in diverse advanced fields in wearable electronics. However, achieving room-temperature phosphorescence materials simultaneously featuring long-lived emission and good stretchability is challenging because it is hard to balance the rigidity and flexibility in the same polymer. Here we present a multiphase engineering for obtaining stretchable phosphorescent materials by combining stiffness and softness simultaneously in well-designed block copolymers. Due to the microphase separation, copolymers demonstrate an intrinsic stretchability of 712%, maintaining an ultralong phosphorescence lifetime of up to 981.11 ms. This multiphase engineering is generally applicable to a series of binary and ternary initiator systems with color-tunable phosphorescence in the visible range. Moreover, these copolymers enable multi-level volumetric data encryption and stretchable afterglow display. This work provides a fundamental understanding of the nanostructures and material properties for designing stretchable materials and extends the potential of phosphorescence polymers.

2.
JACS Au ; 4(3): 1018-1030, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559727

RESUMO

The coarse-grained (CG) model serves as a powerful tool for the simulation of polymer systems; its reliability depends on the accurate representation of both structural and dynamical properties. However, strong correlations between structural and dynamical properties on different scales and also a strong memory effect, enforced by chain connectivity between monomers in polymer systems, render developing a chemically specific systematic CG model a formidable task. In this study, we report a systematic CG approach that combines the iterative Boltzmann inversion (IBI) method and the generalized Langevin equation (GLE) dynamics. Structural properties are ensured by using conservative CG potentials derived from the IBI method. To retrieve the correct dynamical properties in the system, we demonstrate that using a combination of a Rouse-type delta function and a time-dependent short-time kernel in the GLE simulation is practically efficient. The former can be used to adjust the long-time diffusion dynamics, and the latter can be reconstructed from an iterative procedure according to the velocity autocorrelation function (ACF) from all-atomistic (AA) simulations. Taking the polystyrene as an example, we show that not only structural properties of radial distribution function, intramolecular bond, and angle distributions can be reproduced but also dynamical properties of mean-square displacement, velocity ACF, and force ACF resulted from our CG model have quantitative agreement with the reference AA model. In addition, reasonable agreements are observed in other collective properties between our GLE-CG model and the AA simulations as well.

3.
J Chem Phys ; 159(12)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-38127373

RESUMO

How to fabricate perpendicularly oriented domains (PODs) of lamellar and cylinder phases in block copolymer thin films remains a major challenge. In this work, via a coarse-grained molecular dynamics simulation study, we report a solvent evaporation strategy starting from a mixed solution of A-b-B-type diblock copolymers (DBCs) and single-chain nanoparticles (SCNPs) with the same composition, which is capable of spontaneously generating PODs in drying DBC films induced by the interface segregation of SCNPs. The latter occurs at both the free surface and substrate and, consequently, neutralizes the interface selectivity of distinct blocks in DBCs, leading to spontaneous formation of PODs at both interfaces. The interface segregation of SCNPs is related to the weak solvophilicity of the internal cross-linker units. A mean-field theory calculation demonstrates that the increase in the chemical potential of SCNPs in the bulk region drives their interface segregation along with solvent evaporation. We believe that such a strategy can be useful in regulating the PODs of DBC films in practical applications.

4.
ACS Macro Lett ; 12(8): 1052-1057, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37449975

RESUMO

We investigate the molecular origin of mechanical reinforcement in a polymer nanocomposite (PNC) under a glass state via molecular dynamics simulations. The strength of the PNC system is found to be reinforced mainly via reduced plastic deformations of the nanoparticle neighborhood (NN). Such a reinforcement effect is found to decay with an increase in the strain rate. The Arrhenius-Eyring relation is used to analyze its origin. The amplitude of the reinforcement is found to be determined by the difference between the energy barrier (ΔE) for the activation of NN and the work (W) done by the applied stress to conquer that barrier. A larger strain rate is found to result in a larger W and, hence, a weaker reinforcement effect. Such a strain-rate dependence is verified in the experimental tensile tests of a poly(vinyl alcohol)/SiO2 composite system. These results not only provide a new understanding of the molecular origin of the reinforcement effect in the PNC system, but also pave the way for a better design of the PNC material properties.

5.
ACS Nano ; 17(11): 10958-10964, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37252750

RESUMO

As the initially discovered allotrope of boron, amorphous elementary boron (AE-B) has been reported for more than two centuries. Several possible structures of AE-B have been proposed during the past decades. Due to its noncrystalline nature, however, the structure of AE-B has not yet been determined. We notice that AE-B can be dissolved in organic solvents, although the solubility is very low. After surface adsorption from solution, the individual or the self-assembled structure of AE-B molecules can be characterized at the single-molecule or nanoscopic level, which may be helpful to reveal the molecular structure of AE-B. Atomic force microscopy (AFM) imaging shows that AE-B is a chain-like molecule with a thickness (or height) of 0.17 ± 0.01 nm, which agrees well with the diameter of a B atom, demonstrating that the structure of an AE-B molecule contains only one layer of B atoms. Results from high-resolution transmission electron microscopy (HRTEM) indicate that AE-B molecules can be self-assembled into a nanosheet with parallel lines. The width of each line is 0.27 nm, and the periodical length along the chain axial direction is 0.32 ± 0.01 nm. These results indicate that AE-B is composed of a ladder-like inorganic polymer with B4 as the structural unit. This conclusion is supported by the single-chain elasticity obtained by single-molecule AFM and quantum mechanical calculations. We expect that this fundamental study is not only an ending of the two-century-old scientific mystery but also the beginning of the research and applications of AE-B (ladder B) as a polymeric material. The research strategy may be also used to study other amorphous inorganic materials.

6.
Small ; 19(31): e2205291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36635000

RESUMO

Fabricating polymer electrolyte membranes (PEMs) simultaneously with high ion conductivity and selectivity has always been an ultimate goal in many membrane-integrated systems for energy conversion and storage. Constructing broader ion-conducting channels usually enables high-efficient ion conductivity while often bringing increased crossover of other ions or molecules simultaneously, resulting in decreased selectivity. Here, the ultra-small carbon dots (CDs) with the selective barriers are self-assembled within proton-conducting channels of PEMs through electrostatic interaction to enhance the proton conductivity and selectivity simultaneously. The functional CDs regulate the nanophase separation of PEMs and optimize the hydration proton network enabling higher-efficient proton transport. Meanwhile, the CDs within proton-conducting channels prevent fuel from permeating selectively due to their repelling and spatial hindrance against fuel molecules, resulting in highly enhanced selectivity. Benefiting from the improved conductivity and selectivity, the open-circuit voltage and maximum power density of the direct methanol fuel cell (DMFC) equipped with the hybrid membranes raised by 23% and 93%, respectively. This work brings new insight to optimize polymer membranes for efficient and selective transport of ions or small molecules, solving the trade-off of conductivity and selectivity.

7.
Soft Matter ; 19(1): 128-136, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477470

RESUMO

Polar groups have long been recognized to greatly influence the glass transition temperature (Tg) of polymers, but understanding the underlying physical mechanism remains a challenge. Here, we study the glass formation of ring-opening metathesis polymerization (ROMP) copolymers containing polar groups by employing all-atom molecular dynamics simulations. We show that although the number of hydrogen bonds (NHB) and the cohesive energy density increase linearly as the content of polar groups (fpol) increases, the Tg of ROMP copolymers increases with the increase of fpol in a nonlinear fashion, and tends to plateau for sufficiently high fpol. Importantly, we find that the increase rate of Gibbs free energy for HB breaking gradually slows down with the increase of fpol, indicating that the HB is gradually stabilized. Therefore, Tg is jointly determined by NHB and the strength of HBs in the system, while the latter dominates. Although NHB increases linearly with increasing fpol, the HB strength increases slowly with increasing fpol, which leads to a decreasing rate of increase in Tg.

8.
J Am Chem Soc ; 143(50): 21433-21442, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34886669

RESUMO

Modern electrochemical and electronic devices require advanced electrolytes. Liquid crystals have emerged as promising electrolyte candidates due to their good fluidity and long-range order. However, the mesophase of liquid crystals is variable upon heating, which limits their applications as high-temperature electrolytes, e.g., implementing anhydrous proton conduction above 100 °C. Here, we report a highly stable thermotropic liquid-crystalline electrolyte based on the electrostatic self-assembly of polyoxometalate (POM) clusters and zwitterionic polymer ligands. These electrolytes can form a well-ordered mesophase with sub-10 nm POM-based columnar domains, attributed to the dynamic rearrangement of polymer ligands on POM surfaces. Notably, POMs can serve as both electrostatic cross-linkers and high proton conductors, which enable the columnar domains to be high-temperature-stable channels for anhydrous proton conduction. These nanochannels can maintain constant columnar structures in a wide temperature range from 90 to 160 °C. This work demonstrates the unique role of POMs in developing high-performance liquid-crystalline electrolytes, which can provide a new route to design advanced ion transport systems for energy and electronic applications.

9.
J Chem Phys ; 155(5): 054901, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364327

RESUMO

By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.

10.
J Phys Chem Lett ; 12(30): 7100-7105, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34292736

RESUMO

The formation of polymer-patch nanoparticles (PNPs) involves a condensation process of grafted chains on a nanoparticle (NP) surface, which is conventionally achieved via a fine-tuning of the solvent quality. However, such a critical solvent condition differs dramatically between polymers, and the formation mechanism of different patchy structures remains under debate. In this study, we demonstrate by a combined simulation and experimental study that such a surface-patterning process can be easily achieved via a simple solvent evaporation process, which creates a natural nonsolvent condition and is, in principle, adaptable for all polymers. More importantly, we find that patchy structures are controlled by a delicate balance between enthalpic interaction and the entropy penalty of grafted chains. A small variation of cohesive energy density can lead to a dramatic change in patch structure. This work offers a robust yet easy approach for the fabrication of PNPs and provides new insights into polymer segregation on spherical surfaces.

11.
Soft Matter ; 17(24): 5897-5906, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34037067

RESUMO

We use coarse-grained molecular dynamics simulations to study the self-assembly behavior of polyoxometalate (POM) nanoparticles (NPs) decorated with mobile polymer ligands under melt conditions. We demonstrate that due to the mobile nature of the grafted ligands on the NP surface, NPs have the ability to expose a part of their surfaces, leading to a block-copolymer-like self-assembly behavior. The exposed NP surface serves as one block and the grafted ligand polymers as another. This system has a strong ability to self-assemble into long-range ordered structures such as block copolymers due to large incompatibility between POM and ligand polymers, i.e., POM NPs can form lamellar, cylindrical, and spherical structures, which are consistent with previous experimental results. More importantly, these ordered structures are on the sub-10 nm scale, which is an important requirement for many applications. At low graft density, we find a new inverse-cylindrical structure formation where polymers form cylinders and POMs form a continuous network structure. A full self-assembly phase diagram is constructed which illustrates rules to manipulate the self-assembly structures of NPs decorated with mobile polymer ligands. We hope that these computational results will be useful for the new design of nanostructures with improved optical or electronic functions.

12.
Phys Chem Chem Phys ; 22(20): 11400-11408, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32374336

RESUMO

We study the interfacial structure and dynamics of a polymer nanocomposite (PNC) composed of octaaminophenyl polyhedral oligomeric silsesquioxane (OAPS) and poly(2-vinylpyridine) (P2VP) by performing full atomistic molecular dynamics simulations. There are eight aminophenyl groups grafted on the surface of the OAPS particle and the particle has a size comparable to the Kuhn segment of P2VP. These aminophenyl groups can form hydrogen bonds (HBs) with pyridine rings from surrounding P2VP chains. We found that OAPS can form ∼2 HBs on average with surrounding polymer chains. The effect of the HBs is investigated in detail by either switching on or off these HBs in our simulation. By analyzing the interfacial static packing structure and dynamic properties, we demonstrate that the system has an ∼1 nm interface width, similar to the OAPS particle size. We also found that HBs can prevent the further penetration of polymers into the inner zone (grafting layer) of the OAPS, and therefore keep the P2VP chains in the outer layer (>1 nm), remaining bulk-like, which is well consistent with experimental results. In addition, we found that NP diffusion is coupled to the absorbed polymer chains, which also dramatically slows down the diffusion of polymer segments in return. The core-shell model in which the NP and absorbed polymers diffuse as a single object is validated here at the full atomistic level. These results provide atomistic insights into the unique structure and dynamics in the small attractive NP-polymer interfacial region. We hope these results will be helpful for the understanding of peculiar phenomena in attractive polymer nanocomposites containing small NPs.

13.
Macromol Rapid Commun ; 41(24): e1900655, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32134543

RESUMO

Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by intramolecular crosslinking of isolated single polymer chains. Syntheses of such SCNPs usually need to be performed in a dilute solution. In such a condition, the bonding probability of the two active crosslinking units at a short contour distance along the chain backbone is much higher than those which are far away from each other. Such a reaction condition often results in local spheroidization and, therefore, the formation of loosely packed structures. How to inhibit the local spheroidization and improve the compactness of SCNPs is thus a major challenge for the syntheses of SCNPs. In this study, computer simulations are performed and the fact that a precollapse of the polymer chain conformation in a cosolvent condition can largely improve the probability of the crosslinking reactions at large contour distances is demonstrated, favoring the formations of closely packed globular structures. As a result, the formed SCNPs can be more spherical and have higher compactness than those fabricated in ultradilute good solvent solution in a conventional way. It is believed this simulation work can provide a insight into the effective syntheses of SCNPs with spherical conformations and high compactness.


Assuntos
Nanopartículas , Polímeros , Simulação por Computador , Solventes
14.
Nat Commun ; 10(1): 5552, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804474

RESUMO

Adding small nanoparticles (NPs) into polymer melt can lead to a non-Einstein-like decrease in viscosity. However, the underlying mechanism remains a long-standing unsolved puzzle. Here, for an all-polymer nanocomposite formed by linear polystyrene (PS) chains and PS single-chain nanoparticles (SCNPs), we perform large-scale molecular dynamics simulations and experimental rheology measurements. We show that with a fixed (small) loading of the SCNP, viscosity reduction (VR) effect can be largely amplified with an increase in matrix chain length [Formula: see text], and that the system with longer polymer chains will have a larger VR. We demonstrate that such [Formula: see text]-dependent VR can be attributed to the friction reduction experienced by polymer segment blobs which have similar size and interact directly with these SCNPs. A theoretical model is proposed based on the tube model. We demonstrate that it can well describe the friction reduction experienced by melt polymers and the VR effect in these composite systems.

15.
Phys Chem Chem Phys ; 21(28): 15888-15898, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31287116

RESUMO

Dynamic heterogeneity (DH) is a universal property of glass transition phenomena. In this work, we perform a comparative analysis of DH for pure polymer and polymer/nanoparticle composite systems in both film and bulk states via molecular dynamics simulations. We find that the dynamic gradient and the faster average dynamics due to the presence of a free surface are two leading factors, resulting from a nanoconfinement effect, which influence different parts of DH in a film system. The dynamic gradient results from differences in dynamics at different distances from the mobile surface, which induces a large deviation from the Gaussian distribution for the displacement distribution in the film. At the same time, the maximum string size which describes the region size for cooperative motion (dynamic correlation) can also be influenced by the dynamic gradient, although this influence is much weaker than that on the displacement distribution. On the other hand, reflecting temporal fluctuations of dynamics or temporal parts of DH, characteristic peak times of the non-Gaussian parameter and string size, and the ratio between persistent times and exchange times which describe the dynamic exchange properties, are mainly influenced by the faster dynamics on average. Our results demonstrate that measuring different properties (dynamic distribution, dynamic correlation or dynamic exchange) place an emphasis on distinct temporal and spatial parts of DH. It is necessary to use combinational measurements of these properties to give a complete picture of DH in nanoconfinement environments.

16.
Phys Chem Chem Phys ; 21(24): 13258-13267, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31183479

RESUMO

Vitrimers with dynamic covalent bonds make thermosetting materials plastic, recyclable and self-repairing, and have broad application prospects. However, due to the complex composition of vitrimers and the dynamic bond exchange reactions (BERs), the mechanism behind their unique dynamic behavior is not fully understood. We used the hybrid molecular dynamics-Monte Carlo (MD-MC) algorithm to establish a molecular dynamics model that can accurately reflect BERs, and reveal the intrinsic mechanism of the dynamic behavior of the vitrimer system. The simulation results show that BERs change the diffusion mode of the vitrimer's constituent molecules, which in turn affects the BER and other relaxation dynamics. This provides a theoretical basis and a specific method for the rational design of the rheological properties of vitrimers.

17.
ACS Nano ; 13(6): 7135-7145, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184135

RESUMO

Multiscale hierarchical morphologies are greatly desired for fabricating nanocomposites with tunable macroscopic properties, but challenges remain in precisely manipulating the spatial arrangement of nanoparticles in polymer matrices across multiple length scales. Here, we demonstrate a class of mobile-ligand nanoparticle system built upon 1 nm anionic polyoxometalate molecular nanoparticles and cationic terminated polymer chains by electrostatic interaction. The highly rearrangeable polymer chains can serve as mobile ligands to direct the polyoxometalates to align into sub-10 nm anisotropic superlattice-like nanoarrays in the bulk state. Moreover, these nanoarrays can further serve as structural units to assemble into hierarchically ordered morphologies in polymer matrices, e.g., percolated networks over hundreds of micrometers which are comprised of cylindrically packed polyoxometalate superlattices down to sub-10 nm scale. These hierarchical morphologies enable the nanocomposites with reinforced mechanical performance. The presented mobile-ligand approach can provide a paradigm to design functional polymer nanocomposites with improved properties such as mechanical reinforcement and collective optical and electronic functions.

18.
Soft Matter ; 15(22): 4476-4485, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31111851

RESUMO

In polymer/nanoparticle composite (PNC) thin films, polymer chains experience strong confinement effects not only at the free surface area but also from nanoparticles (NPs). In this work, the influence of NP-polymer interaction and NP distribution on the polymer segmental dynamics and the glass transition behavior of PNC free-standing films are investigated through molecular dynamics simulations. We demonstrate that NPs will migrate to the film surface area and form an NP-concentrated layer when NP-polymer interactions are weak, while NPs are well dispersed in the bulk region when NP-polymer interactions are strong. In both cases, we find increases in the glass transition temperature Tg compared with the pure film without NPs, although with a different degree. The weakly interacting system has the same Tg as the pure bulk system without NPs. The NP layer formed at the surface area reduces both the mobility of the surface polymer beads and the mobility gradient in the film normal direction (MGFND), therefore resulting in an increase in the Tg which highlights the vital role of the mobile surface layer. In contrast, the NPs in the bulk region enlarge the MGFND. NPs have opposite influences on the polymer bead dynamic anisotropy when they interact weakly or strongly with polymers, weakened for the former and enhanced for the latter. These findings offer a clear picture of the segmental dynamics and glass transition behavior in free-standing PNC films with different NP-polymer interaction strengths. We hope these results will be helpful for the property design of related materials.

19.
Phys Chem Chem Phys ; 21(13): 7115-7126, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30883633

RESUMO

It is widely accepted that adding nanoparticles (NPs) into polymer matrices can dramatically alter the mechanical properties of the material, and that the properties at the NP/polymer interface play a vital role. By performing coarse-grained molecular dynamics simulations, we study the stress-strain behaviour of polymer/NP composites (PNCs) in a glassy state under a triaxial tensile deformation, in which the NPs are well dispersed in the system via bimodal grafting. A 'HOMO' system, in which the short grafted chains are chemically identical to the matrix polymer, and a 'HETERO' system, in which the short grafted chains interact weakly with the matrix, are investigated. Our simulations demonstrate that the HOMO system behaves very similarly to the pure polymer system, with quick cavitation and a drop in stress after the yielding point, corresponding to a craze deformation process. While in the HETERO system, weak interactions between the short grafts and the matrix polymer induce a low local modulus, therefore, rather homogeneous void formation and consequently a slower cavitation process are observed at the surface of the well dispersed NPs during the tensile deformation. As a result, the depletion effect at the NP surface eventually leads to NP re-assembly at large strains. Moreover, the HETERO system undergoes a shear-deformation-tended tensile process rather than the craze deformation found in the HOMO system. At the same time, the HETERO system is more ductile, with a much slower drop in stress after yielding than the HOMO system. In addition, the homogeneous generation of voids at small strain in the HETERO system can be utilized in the fabrication of polymer films with desirable separation abilities for gases or small molecules. We hope that these simulation results will be helpful for the property regulation of PNC materials containing polymer grafted NPs.

20.
Phys Chem Chem Phys ; 21(3): 1417-1427, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30601534

RESUMO

Patchy nanoparticles (PNPs) have received increased attention since they serve as a new type of self-assembly unit. However, the precise synthesis of PNPs with target patch numbers and their spatial distribution on a nanoparticle (NP) surface are still a formidable challenge. A recent experimental study [R. M. Choueiri et al., Nature, 2016, 538, 79] has demonstrated that following a change in the solvent quality, the collapse and thermodynamically driven segregation of the grafted homopolymer (HP) chains on the NP surface can lead to the formation of surface-pinned micelles, and therefore, PNPs. In this study, by using coarse-grained molecular dynamics simulations, we demonstrate that the collapse of the grafted diblock copolymer (DBC) chains on the NP surface can also lead to the formation of PNPs, but in a more controllable manner with target patch numbers and symmetric surface distribution. In addition, our studies have shown that PNPs formed from the collapse of surface-grafted DBC chains are superior to those formed from the collapse of HP chains. We have shown that the use of DBC can generate more spherical patches than that using HP. More importantly, grafting DBC chains on the NP surface offers a larger adjustable parameter space due to their distinct properties, tunable volume fractions of the two blocks, and the different interaction types with the NP surface. In addition, solvent-phobicity and the sequence of collapsing of each block can also be utilized to control the formation pathway of the PNP structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA