Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 179: 117432, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255735

RESUMO

Hepatocellular carcinoma (HCC) remains the fourth leading cause of cancer-associated death globally with a lack of efficient therapy. The pathogenesis of HCC is a complex and multistep process, highly reliant on de novo lipogenesis, from which tumor cells can incorporate fatty acids to satisfy the necessary energy demands of rapid proliferation and provide survival advantages. Triptolide (TP) is a bioactive ingredient exhibiting potent abilities of anti-proliferation and lipid metabolism regulation, but its clinical application is constrained because of its toxicity and non-specific distribution. The present study has developed galactosylated bovine serum albumin nanoparticles loaded with TP (Gal-BSA-TP NPs) to alleviate systemic toxicity and increase tumor-targeting and antitumor efficacy. Furthermore, Gal-BSA-TP NPs could inhibit de novo lipogenesis via the p53-SREBP1C-FASN pathway to deprive the fuel supply of HCC, offering a specific strategy for HCC treatment. In general, this study provided a biocompatible delivery platform for targeted therapy for HCC from the perspective of de novo lipogenesis.

2.
MedComm (2020) ; 5(8): e659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092293

RESUMO

Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-ß, Wnt/ß-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.

3.
J Nanobiotechnology ; 22(1): 196, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644492

RESUMO

Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , Microambiente Tumoral , Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/metabolismo , Antineoplásicos/farmacologia
4.
Front Plant Sci ; 15: 1368135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486854

RESUMO

Introduction: With the depletion of wild Astragali Radix (WA) resources, imitated-wild Astragali Radix (IWA) and cultivated Astragali Radix (CA) have become the main products of Astragali Radix. However, the quality differences of three growth patterns (WA, IWA, CA) and different growth years of Astragali Radix have not been fully characterized, leading to a lack of necessary scientific evidence for their use as substitutes for WA. Methods: We innovatively proposed a multidimensional evaluation method that encompassed traits, microstructure, cell wall components, saccharides, and pharmacodynamic compounds, to comprehensively explain the quality variances among different growth patterns and years of Astragali Radix. Results and discussion: Our study showed that the quality of IWA and WA was comparatively similar, including evaluation indicators such as apparent color, sectional structure and odor, thickness of phellem, diameter and number of vessels, morphology of phloem and xylem, and the levels and ratios of cellulose, hemicellulose, lignin, sucrose, starch, water-soluble polysaccharides, total-saponins. However, the content of sucrose, starch and sorbose in CA was significantly higher than WA, and the diameter and number of vessels, total-flavonoids content were lower than WA, indicating significant quality differences between CA and WA. Hence, we suggest that IWA should be used as a substitute for WA instead of CA. As for the planting years of IWA, our results indicated that IWA aged 1-32 years could be divided into three stages according to their quality change: rapid growth period (1-5 years), stable growth period (6-20 years), and elderly growth period (25-32 years). Among these, 6-20 years old IWA exhibited consistent multidimensional comparative results, showcasing elevated levels of key active components such as water-soluble polysaccharides, flavonoids, and saponins. Considering both the quality and cultivation expenses of IWA, we recommend a cultivation duration of 6-8 years for growers. In conclusion, we established a novel multidimensional evaluation method to systematically characterize the quality of Astragali Radix, and provided a new scientific perspective for the artificial cultivation and quality assurance of Astragali Radix.

5.
Int J Nanomedicine ; 19: 743-758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283199

RESUMO

Background: The morbidity and mortality of triple-negative breast cancer (TNBC) are still high, causing a heavy medical burden. CCL5, as a chemokine, can be involved in altering the composition of the tumor microenvironment (TME) as well as the immunosuppressive degree, and has become a very promising target for the treatment of TNBC. Dysregulation of microRNAs (miRNAs) in tumor tissues is closely related to tumor progression, and its utilization can be used to achieve therapeutic purposes. Engineered exosomes can avoid the shortcomings of miRNAs and also enhance their targeting and anti-tumor effects through engineering. Therefore, we aimed to create a cRGD-modified exosome for targeted delivery of miR-588 and to investigate its effect in remodeling immunosuppressive TME by anchoring CCL5 in TNBC. Methods: In this study, we loaded miR-588 into exosomes using electroporation and modified it with cRGD using post insertion to obtain cRGD-Exos/miR-588. Transmission electron microscopy (TEM), nanoparticle tracking assay technique (NTA), Western Blots, qPCR, and flow cytometry were applied for its characterization. CCK-8, qPCR and enzyme-linked immunosorbent assay (ELISA), in vivo fluorescence imaging system, immunohistochemistry and H&E staining were used to explore the efficacy as well as the mechanism at the cellular level as well as in subcutaneous graft-tumor nude mouse model. Results: The cRGD-Exos/miR-588 was successfully constructed and had strong TNBC tumor targeting in vitro and in vivo. Meanwhile, it has significant efficacy on TME components affected by CCL5 and the degree of immunosuppression, which can effectively control TNBC with good safety. Conclusion: In this experiment, cRGD-Exos/miR-588 was prepared to remodel immunosuppressive TME by anchoring CCL5, which is affected by the vicious cycle of immune escape. Overall, cRGD-Exos/miR-588 explored the feasibility of targeting TME for the TNBC treatment, and provided a competitive delivery system for the engineered exosomes to deliver miRNAs for antitumor therapy drug.


Assuntos
Antineoplásicos , Exossomos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , MicroRNAs/genética , Antineoplásicos/farmacologia , Imunossupressores/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
J Colloid Interface Sci ; 657: 240-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38039884

RESUMO

An electrocatalyst of single-atomic Mn sites with MnP nanoparticles (NPs) on N, P co-doped carbon substrate was constructed to enhance the catalytic activity of oxygen reduction reaction (ORR) through one-pot in situ doping-phosphatization strategy. The optimized MnSA-MnP-980℃ catalyst exhibits an excellent ORR activity in KOH electrolyte with a half-wave potential (E1/2) of 0.88 V (vs. RHE), and the ORR current density of MnSA-MnP-980℃ maintained 97.9 % for over 25000 s chronoamperometric i-t measurement. When using as the cathode, the MnSA-MnP-980℃ displays a peak power density of 51 mW cm-2 in Zinc-Air batteries, which observably outperformed commercial Pt/C (20 wt%). The X-ray photoelectron spectroscopy reveal that the doped P atoms with a strong electron-donating effectively enhances electron cloud density of Mn SAs sites, facilitating the adsorption of O2 molecules. Meanwhile, the introduction of MnP NPs can regulate the electronic structure of Mn SAs sites, making Mn SAs active sites exist in a low oxidation state and are less positively charged, which can supply electrons for ORR process to narrow the adsorption energy barrier of ORR intermediates. This work constructs novel active sites with excellent ORR properties and provides valuable reference for the development of practical application.

7.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4634-4646, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802802

RESUMO

Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-ß-D-glucuronide, oroxylin A-7-O-ß-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Scutellaria baicalensis/genética , Scutellaria baicalensis/química , Glucuronídeos , Multiômica , Flavonoides/química
8.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2160-2185, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282904

RESUMO

Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.


Assuntos
Bombyx , Morus , Animais , Morus/química , Ácido Clorogênico/análise , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/química
9.
Acta Pharm Sin B ; 13(1): 256-270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815048

RESUMO

Oxalicine B (1) is an α-pyrone meroterpenoid with a unique bispirocyclic ring system derived from Penicillium oxalicum. The biosynthetic pathway of 15-deoxyoxalicine B (4) was preliminarily reported in Penicillium canescens, however, the genetic base and biochemical characterization of tailoring reactions for oxalicine B (1) has remained enigmatic. In this study, we characterized three oxygenases from the metabolic pathway of oxalicine B (1), including a cytochrome P450 hydroxylase OxaL, a hydroxylating Fe(II)/α-KG-dependent dioxygenase OxaK, and a multifunctional cytochrome P450 OxaB. Intriguingly, OxaK can catalyze various multicyclic intermediates or shunt products of oxalicines with impressive substrate promiscuity. OxaB was further proven via biochemical assays to have the ability to convert 15-hydroxdecaturin A (3) to 1 with a spiro-lactone core skeleton through oxidative rearrangement. We also solved the mystery of OxaL that controls C-15 hydroxylation. Chemical investigation of the wild-type strain and deletants enabled us to identify 10 metabolites including three new compounds, and the isolated compounds displayed potent anti-influenza A virus bioactivities exhibiting IC50 values in the range of 4.0-19.9 µmol/L. Our studies have allowed us to propose a late-stage biosynthetic pathway for oxalicine B (1) and create downstream derivatizations of oxalicines by employing enzymatic strategies.

10.
J Sci Food Agric ; 101(7): 2846-2854, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33145761

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) refers to liver damage caused by long-term heavy drinking, which causes oxidative stress and changes in gut microbiota. In this paper, we investigated the hepatoprotective effect of sea buckthorn fermentation liquid on ALD in mice and the interaction between ALD and gut microbiota using animal experiments and gut microbiota measurements. RESULTS: We found that the contents of total flavonoids, total triterpenes and related short-chain fatty acids (SCFAs) in sea buckthorn fermentation liquid (SFL) were significantly greater. Liver index, kidney index, spleen index, serum indexes of liver injury - alanine aminotransferase (ALT) and spartate aminotransferase (AST), inflammatory factors in liver tissues - tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), oxidation indexes - malondialdehyde (MDA) and superoxide dismutase (SOD), and lipid metabolism indexes - high-density liptein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG), suggested that SFL significantly ameliorates liver injury caused by alcohol. By measuring gut microbiota in mice feces samples, we found that the high-dose group of SFL reversed the declining trend of the gut microbiota Firmicutes/Bacteroidetes (F/B) ratio caused by alcohol, reducing the number of gram-negative bacteroidetes. Patescibacteria was tightly connected with the indicators of ALD. At the genus level, high-dose SFL significantly downregulated Akkermansia, Turicibacter, Alistipes and Ruminiclostridium, and improved the abundance of beneficial bacteria in Lactobacillus. In addition, Alistipes and Ruminiclostridium was closely connected with the indicators of ALD. CONCLUSION: Sea buckthorn fermentation liquid protected against alcoholic liver disease and modulated the composition of gut microbiota. © 2020 Society of Chemical Industry.


Assuntos
Alimentos Fermentados/análise , Sucos de Frutas e Vegetais/análise , Microbioma Gastrointestinal , Hippophae/metabolismo , Hepatopatias Alcoólicas/dietoterapia , Fígado/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Endostatinas , Fezes/microbiologia , Fermentação , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Hippophae/química , Hippophae/microbiologia , Humanos , Lactobacillus plantarum/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Fragmentos de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA