Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547824

RESUMO

The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 µm to 485.9 µm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 µm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.


Assuntos
Quitosana , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Aerobiose , Nitrogênio/química
2.
Sci Total Environ ; 762: 144171, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33360471

RESUMO

This study presents a novel strategy to accelerate the start-up of aerobic granular sludge (AGS) system and ensure the nutrient removal during cultivation. This new method consists of preparing the chitosan-based sludge aggregates outside the reactor and then seeding the reactor with such sludge aggregates. To prepare chitosan-based sludge aggregates, chitosan was dissolved in acetic acid solution acting as a cationic flocculant to bind negatively charged sludge together, and then the dissolved chitosan was in situ precipitated by readjusting pH to form stable sludge aggregates. The chitosan-induced charge neutralization and water-insolubility of chitosan were the two main reasons for the super-rapid formation of chitosan-based sludge aggregates. The as-prepared chitosan-based sludge aggregates had a much lower sludge volume index at 30 min (SVI30) (90.1 mL/g) than the original sludge (SVI30 = 328.0 mL/g). They also had some AGS-like characteristics such as large particle size (1300 µm) and fast settling velocity (23.8 m/h). Consequently, short settling time can be achieved and excessive biomass wash-out can be avoided in the rapid start-up of AGS system with chitosan-based sludge aggregates as inoculant, which was beneficial to accelerating sludge granulation while maintaining nutrient removal. Additionally, the abundances of filamentous bacteria and Candidatus Accumulibacter and the content of extracellular polymeric substances increased during cultivation, which could also contribute to the AGS formation. By seeding chitosan-based sludge aggregates in the anaerobic/oxic sequencing batch reactor, complete granulation was rapidly achieved in 10 days, and good removals of nitrogen and phosphorus was obtained after 14-18 days of cultivation.


Assuntos
Quitosana , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
3.
Sci Total Environ ; 674: 105-113, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004888

RESUMO

The feasibility of rapidly controlling activated sludge bulking and accelerating aerobic sludge granulation was evaluated by adding intact aerobic granular sludge (AGS) to the bulking activated sludge (BAS) reactor. Two ratios of AGS to BAS (0.2 in the first reactor (R1), and 0.4 in the second reactor (R2)) were tested. The results indicate that the addition of AGS immediately improved the settling ability of BAS (sludge volume index at 30 min (SVI30) in R1 and R2 decreased from 173.1 mL/g to 130.8 and 91.3 mL/g, respectively) and gradually increased the biomass concentration (mixed liquor suspended solids (MLSS) in R1 and R2 increased to 4722 and 5190 mg/L, respectively), thus resolving the sludge bulking problem. Meanwhile, adding AGS not only promoted the BAS growth in aggregates, but also facilitated the selection of well-settling aggregates at an early stage. Consequently, the granulation process was significantly accelerated. The granulation time in R1 and R2 was 14 and 10 days, respectively, indicating that the higher ratio of AGS to BAS can result in the faster granulation. Partial nitrification could be maintained during the BAS granulation process when the initial inoculation of nitritation sludge was large enough. Additionally, the microbial community changed during the BAS granulation process. The genera Thauera and Zoogloea belonging to family Rhodobacteraceae were speculated to play an important role in the BAS granulation.


Assuntos
Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Biomassa , Reatores Biológicos , Microbiota , Nitrificação , Thauera
4.
Huan Jing Ke Xue ; 38(12): 5116-5123, 2017 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964571

RESUMO

The degradation of ciprofloxacin (CIP) in a base activated peroxymonosulfate (PMS) system was investigated. Results showed that a base activated PMS system can efficiently remove CIP. Singlet oxygen (1 O2) and superoxide anion radical (O2-·) were confirmed to be the major reactive oxygen species through radical quenching experiments. The NaOH concentration, PMS concentration, reactive temperature, and coexisting anions also affected CIP removal. Both NaOH and PMS concentration presented a dual effect, which was highly concentration dependent. An improvement in reactive temperature accelerated CIP degradation, and the calculated activation energy (Ea) was determined to be 5.09 kJ·mol-1 through the fitting of the Arrhenius equation. Different anions had different effects on CIP degradation. No obvious change in CIP concentration was observed when Cl-, SO42-, and NO3- were introduced. H2PO42- inhibited the degradation, but CO32- significantly promoted it. Ten oxidation products were identified through UPLC-MS/MS analysis, and the piperazine ring in the molecular structure of CIP was preferentially attacked by reactive oxygen species in the base activated PMS system.


Assuntos
Ciprofloxacina/metabolismo , Peróxidos/química , Poluentes Químicos da Água/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA