RESUMO
BACKGROUND: Cervical and upper thoracic esophageal cancer (ESCA) presents treatment challenges due to limited clinical evidence. This multi-center study (ChC&UES) explores radical radio(chemo)therapy efficacy and safety, especially focusing on radiation dose. METHOD: We retrospectively analyzed clinical data from 1,422 cases across 8 medical centers. According to the radiation dose for primary gross tumor, patients were divided into standard dose radiotherapy (SD, 50-55 Gy) or high dose (HD, > 55 Gy) radiotherapy. HD was further subdivided into conventional- high-dose group (HD-conventional, 55-63 Gy) and ultra-high-dose group (HD-ultra, ≥ 63 Gy). Primary outcome was Overall Survival (OS). RESULTS: The median OS was 33.0 months (95% CI: 29.401-36.521) in the whole cohort. Compared with SD, HD shown significant improved survival in cervical ESCA in Kaplan-Meier (P = 0.029) and cox multivariate regression analysis (P = 0.024) while shown comparable survival in upper thoracic ESCA (P = 0.735). No significant difference existed between HD-conventional and HD-ultra in cervical (P = 0.976) and upper thoracic (P = 0.610) ESCA. Incidences of radiation esophagitis and pneumonia from HD were comparable to SD (P = 0.097, 0.240), while myosuppression risk was higher(P = 0.039). The Bonferroni method revealed that, for both cervical and upper thoracic ESCA, HD-ultra enhance the objective response rate (ORR) compared to SD (P < 0.05). CONCLUSION: HD radiotherapy benefits cervical but not upper thoracic ESCA, while increasing bone marrow suppression risk. Further dose escalating (≥ 63 Gy) doesn't improve survival but enhances ORR.
Assuntos
Quimiorradioterapia , Neoplasias Esofágicas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Feminino , Pessoa de Meia-Idade , Masculino , Quimiorradioterapia/métodos , Idoso , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Adulto , Radioterapia Conformacional/métodos , Taxa de Sobrevida , Idoso de 80 Anos ou mais , PrognósticoRESUMO
Inherently chiral calixarenes have garnered significant attention due to their distinctive properties, yet the development of efficient catalytic asymmetric synthesis methods remains a critical challenge. Herein, we report the asymmetric synthesis of calix[4]arenes featuring inherent or both inherent and axial chirality via a cobalt-catalyzed C-H activation/annulation strategy in high yield with excellent enantio- and diastereoselectivity (up to > 99% ee and > 20:1 dr). Electrooxidation was also suitable for this transformation to obviate the sacrificial metal oxidants, underscoring the environmentally friendly potential of this approach. A key octahedral cobaltacycle intermediate was synthesized and characterized, providing valuable insights into the mode of enantio- and diastereocontrol of this protocol. Noteworthy photoluminescence quantum yields of up to 0.94 were measured, underscoring the potential of these compounds in the domain of organic fluorescent materials.
RESUMO
Conventional plate electrodes were commonly used in electrochemical flow injection analysis and only part of molecules diffused to the plane of electrodes could be detected, which would limit the performance of electrochemical detection. In this study, a low-cost native stainless steel wire mesh (SSWM) electrode was integrated into a 3D-printed device for electrochemical flow injection analysis with a pass-through mode, which is different compared with previous flow-through mode. This strategy was applied for sensitive analysis of hydrogen peroxide (H2O2) released from cells. Under the optimal conditions (the applied potentials, the flow rate and the sample volume), the device exhibits high sensitivity toward H2O2. Linear relationships could be achieved between electrochemical responses and the concentration of H2O2 ranging from 1 nM to 1 mM. The excellent analytical performance of the SSWM-based device could be attributed to the pass-through mode based on the mesh microstructure and intrinsic catalytic properties for H2O2 by stainless steel. This approach could be further successfully extended for screening of H2O2 released from HeLa cells with electrochemical responses linear to the number of cells in a range of 3 - 1.35 × 104 cells with an injection volume of 30 µL. This study revealed the potential of mesh electrodes in electrochemical flow injection analysis for cellular function and pathology and its possible extension in cell counting and on-line analysis.
Assuntos
Análise de Injeção de Fluxo , Peróxido de Hidrogênio , Humanos , Células HeLa , Peróxido de Hidrogênio/análise , Aço Inoxidável , Técnicas Eletroquímicas , EletrodosRESUMO
The combination of achiral Cp*Rh(III) with chiral carboxylic acids (CCAs) represents an efficient catalytic system in transition metal-catalyzed enantioselective C-H activation. However, this hybrid catalysis is limited to redox-neutral C-H activation reactions and the adopt to oxidative enantioselective C-H activation remains elusive and pose a significant challenge. Herein, we describe the development of an electrochemical Cp*Rh(III)-catalyzed enantioselective C-H annulation of sulfoximines with alkynes enabled by chiral carboxylic acid (CCA) in an operationally friendly undivided cell at room temperature. A broad range of enantioenriched 1,2-benzothiazines are obtained in high yields with excellent enantioselectivities (up to 99 % yield and 98 : 2â er). The practicality of this method is demonstrated by scale-up reaction in a batch reactor with external circulation. A crucial chiral Cp*Rh(III) intermediate is isolated, characterized, and transformed, providing rational support for a Rh(III)/Rh(I) electrocatalytic cycle.
RESUMO
P-Stereogenic phosphorus compounds are important structural elements in chiral ligands or organocatalysts. Herein, we report a Pd(II)-catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides using cheap commercially available L-pGlu-OH as a chiral ligand. A broad range of P-stereogenic phosphinamides were gained in good yields with high enantioselectivities (33 examples, up to 77% yield, 99% ee) via desymmetrization and kinetic resolution.
RESUMO
Axially chiral styrenes, a type of atropisomer analogous to biaryls, have attracted great interest because of their unique presence in natural products and asymmetric catalysis. Since 2016, a number of methodologies have been developed for the atroposelective construction of these chiral skeletons, involving both transition metal catalysis and organocatalysis. In this feature article, we aim to provide a comprehensive understanding of recent advances in the asymmetric synthesis of axially chiral styrenes catalyzed by transition metals, integrating scattered work with different catalytic systems together. This feature article is cataloged into five sections according to the strategies, including asymmetric coupling, enantioselective C-H activation, central-to-axial chirality transfer, asymmetric alkyne functionalization, and atroposelective [2+2+2] cycloaddition.
RESUMO
Image contrast is often limited by background autofluorescence in steady-state bioimaging microscopy. Upconversion bioimaging can overcome this by shifting the emission lifetime and wavelength beyond the autofluorescence window. Here we demonstrate the first example of triplet-triplet annihilation upconversion (TTA-UC) based lifetime imaging microscopy. A new class of ultra-small nanoparticle (NP) probes based on TTA-UC chromophores encapsulated in an organic-inorganic host has been synthesised. The NPs exhibit bright UC emission (400-500â nm) in aerated aqueous media with a UC lifetime of ≈1â µs, excellent colloidal stability and little cytotoxicity. Proof-of-concept demonstration of TTA-UC lifetime imaging using these NPs shows that the long-lived anti-Stokes emission is easily discriminable from typical autofluorescence. Moreover, fluctuations in the UC lifetime can be used to map local oxygen diffusion across the subcellular structure. Our TTA-UC NPs are highly promising stains for lifetime imaging microscopy, affording excellent image contrast and potential for oxygen mapping that is ripe for further exploitation.
RESUMO
P-Stereogenic phosphinamides represent important structural elements in chiral organocatalysts and bioactive compounds. Herein, we report Pd(II)-catalyzed enantioselective C-H alkynylation using cheap commercially available l-pyroglutamic acid as a chiral ligand. A range of structurally diverse P-stereogenic phosphinamides was prepared in good yields with high enantioselectivities via desymmetrization and kinetic resolution. A tailor-made congested directing group, N-ethyl-N-(3-methylpyridin-2-yl)amino, was crucial for the reactivity.
RESUMO
Chlorophototrophic organisms have a charge-separating reaction centre (RC) complex that receives energy from a dedicated light-harvesting (LH) antenna. In the purple phototrophic bacteria, these two functions are embodied by the 'core' photosynthetic component, the RC-LH1 complex. RC-LH1 complexes sit within a membrane bilayer, with the central RC wholly or partly surrounded by a curved array of LH1 subunits that bind a series of bacteriochlorophyll (BChl) and carotenoid pigments. Decades of research have shown that the absorption of light initiates a cascade of energy, electron, and proton transfers that culminate in the formation of a quinol, which is subsequently oxidized by the cytochrome bc1 complex. However, a full understanding of all these processes, from femtosecond absorption of light to millisecond quinone diffusion, requires a level of molecular detail that was lacking until the remarkable recent upsurge in the availability of RC-LH1 structures. Here, we survey 13 recently determined RC-LH1 assemblies, and we compare the precise molecular arrangements of pigments and proteins that allow efficient light absorption and the transfer of energy, electrons and protons. We highlight shared structural features, as well as differences that span the bound pigments and cofactors, the structures of individual subunits, the overall architecture of the complexes, and the roles of additional subunits newly identified in just one or a few species. We discuss RC-LH1 structures in the context of prior biochemical and spectroscopic investigations, which together enhance our understanding of the molecular mechanisms of photosynthesis in the purple phototrophic bacteria. A particular emphasis is placed on how the remarkable and unexpected structural diversity in RC-LH1 complexes demonstrates different evolutionary solutions for maximising pigment density for optimised light harvesting, whilst balancing the requirement for efficient quinone diffusion between RC and cytochrome bc1 complexes through the encircling LH1 complex.
Assuntos
Carotenoides , Fotossíntese , Carotenoides/química , Carotenoides/metabolismo , Citoplasma/metabolismo , Benzoquinonas/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Three-dimensional (3D) printing of soft biomaterials facilitates the progress of personalized medicine. The development for different forms of 3D-printable biomaterials can promotes the potential manufacturing for artificial organs and provides biomaterials with the required properties. In this study, gelatin methacryloyl (GelMA) and dialdehyde-functionalized polyurethane (DFPU) were combined to create a double crosslinking system and develop 3D-printable GelMA-PU biodegradable hydrogel and cryogel. The GelMA-PU system demonstrates a combination of self-healing ability and 3D printability and provides two distinct forms of 3D-printable biomaterials with smart functions, high printing resolution, and biocompatibility. The hydrogel was printed into individual modules through an 80 µm or larger nozzle and further assembled into complex structures through adhesive and self-healing abilities, which could be stabilized by secondary photocrosslinking. The 3D-printed hydrogel was adhesive, light transmittable, and could embed a light emitting diode (LED). Furthermore, the hydrogel laden with human mesenchymal stem cells (hMSCs) was successfully printed and showed cell proliferation. Meanwhile, 3D-printed cryogel was achieved by printing on a subzero temperature platform through a 210 µm nozzle. After secondary photocrosslinking and drying, the cryogel was deliverable through a 16-gage (1194 µm) syringe needle and can promote the proliferation of hMSCs. The GelMA-PU system extends the ink pool for 3D printing of biomaterials and has potential applications in tissue engineering scaffolds, minimally invasive surgery devices, and electronic wound dressings. STATEMENT OF SIGNIFICANCE: The 3D-printable biomaterials developed in this work are GelMA-based ink with smart funcitons and have potentials for various customized medical applications. The synthesized GelMA-polyurethane double network hydrogel can be 3D-printed into individual modules (e.g., 11 × 11 × 5 mm3) through an 80 µm or larger size nozzle, which are then assembled into a taller structure over five times of the initial height by self-healing and secondary photocrosslinking. The hydrogel is adhesive, light transmittable, and biocompatible that can either carry human mesenchymal stem cells (hMSCs) as bioink or embed a red light LED (620 nm) with potential applications in electronic skin dressing. Meanwhile, the 3D-printed highly compressible cryogel (e.g., 6 × 6 × 1 mm3) is deliverable by a 16-gage (1194 µm) syringe needle and supports the proliferation of hMSCs also.
Assuntos
Bioimpressão , Hidrogéis , Humanos , Hidrogéis/química , Criogéis , Poliuretanos/química , Alicerces Teciduais/química , Gelatina/química , Materiais Biocompatíveis/química , Metacrilatos/química , Engenharia Tecidual/métodos , Impressão Tridimensional , Bioimpressão/métodosRESUMO
Development of hydrogel-based actuators with programmable deformation is an important topic that arouses much attention in fundamental and applied research. Most of these actuators are nonbiodegradable or work under nonphysiological conditions. Herein, a temperature-responsive and biodegradable gelatin methacryloyl (GelMA)-poly(N-isopropylacrylamide) hydrogel (i.e., GN hydrogel) network was explored as the active layer of a bilayer actuator. Small-angle X-ray scattering (SAXS) revealed that the GN hydrogel formed a mesoglobular structure (â¼230 Å) upon a thermally induced phase transition. Rheological data supported that the GN hydrogel possessed 3D printability and tunable mechanical properties. A bilayer hydrogel actuator composed of active GN and passive GelMA layers was optimized by varying the layer thickness and compositions to achieve large, reproducible, and anisotropic bending with a curvature of â¼5.5 cm-1. Different patterns of the active layer were designed for actuation in programmable control. The 3D printed GN hydrogel constructs showed significant volume reduction (â¼25-60% depending on construct design) at 37 °C with the resolution enhanced by the thermo-triggered actuation, while they were able to fully reswell at room temperature. A more intricate 3D printed butterfly actuator demonstrated the ability to mimic the wing movement through thermoresponsiveness. Furthermore, myoblasts laden in the GN hydrogel exhibited significant proliferation of â¼376% in 14 days. This study provides a new fabrication approach for developing biomimetic devices, artificial muscles, and soft robotics for biomedical applications.
RESUMO
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αß-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.
Assuntos
Gammaproteobacteria , Complexo de Proteínas do Centro de Reação Fotossintética , Microscopia Crioeletrônica , Gammaproteobacteria/química , FotossínteseRESUMO
The light-harvesting complex 2 (LH2) of purple bacteria is one of the most studied photosynthetic antenna complexes. Its symmetric structure and ring-like bacteriochlorophyll arrangement make it an ideal system for theoreticians and spectroscopists. LH2 complexes from most bacterial species are thought to have eightfold or ninefold symmetry, but recently a sevenfold symmetric LH2 structure from the bacterium Mch. purpuratum was solved by Cryo-Electron microscopy. This LH2 also possesses unique near-infrared absorption and circular dichroism (CD) spectral properties. Here we use an atomistic strategy to elucidate the spectral properties of Mch. purpuratum LH2 and understand the differences with the most commonly studied LH2 from Rbl. acidophilus. Our strategy exploits a combination of molecular dynamics simulations, multiscale polarizable quantum mechanics/molecular mechanics calculations, and lineshape simulations. Our calculations reveal that the spectral properties of LH2 complexes are tuned by site energies and exciton couplings, which in turn depend on the structural fluctuations of the bacteriochlorophylls. Our strategy proves effective in reproducing the absorption and CD spectra of the two LH2 complexes, and in uncovering the origin of their differences. This work proves that it is possible to obtain insight into the spectral tuning strategies of purple bacteria by quantitatively simulating the spectral properties of their antenna complexes.
Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia Crioeletrônica , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/química , Simulação de Dinâmica Molecular , Proteobactérias/metabolismoRESUMO
Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catechol-functionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan alone have not yet been explored. Herein, catechol-grafted chitosan (CC) was synthesized and further concentrated to obtain the self-healing CC hydrogels. The gelation mechanism of CC hydrogels may be attributed to the formation of hydrogen bonding, cation-π interactions, Michael addition, or Schiff base reactions during concentration phases. Rheological studies showed that the CC hydrogel owned self-healing properties in repeated damage-healing cycles. Coherent small-angle X-ray scattering (SAXS) analyses revealed the formation of a mesoscale structure (~9 nm) as the solid content of the hydrogel increased. In situ SAXS combined with rheometry verified the strain-dependent behavior of the CC hydrogel. The CC hydrogel displayed the osmotic-responsive behavior and enhanced adhesive strength (0.38 N/cm2) after immersion in the physiological saline. The CC scaffold prepared by lyophilizing the CC hydrogel revealed a macroporous structure (~200 µm), a high swelling ratio (9656%), good compressibility, and durability. This work provides an insight into the design of using chitosan-catechol alone to produce hydrogels or scaffolds with tunable mechanical properties for further applications in biomedical fields.
RESUMO
The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and ß-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αß-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αß-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.
Assuntos
Bacterioclorofilas , Rodopseudomonas , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/metabolismo , Peptídeos/metabolismo , Rodopseudomonas/genéticaRESUMO
Carotenoids are important photosynthetic pigments that play key roles in light harvesting and energy transfer, photoprotection, and in the folding, assembly, and stabilization of light-harvesting pigment-protein complexes. The genetically tractable purple phototrophic bacteria have been useful for investigating the biosynthesis and function of photosynthetic pigments and cofactors, including carotenoids. Here, we give an overview of the roles of carotenoids in photosynthesis and of their biosynthesis, focusing on the extensively studied purple bacterium Rhodobacter sphaeroides as a model organism. We provide detailed procedures for manipulating carotenoid biosynthesis, and for the preparation and analysis of the light-harvesting and photosynthetic reaction center complexes that bind them. Using appropriate examples from the literature, we discuss how such approaches have enhanced our understanding of the biosynthesis of carotenoids and the photosynthesis-related functions of these fascinating molecules.
Assuntos
Carotenoides , Rhodobacter sphaeroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Proteobactérias/genética , Proteobactérias/metabolismo , Rhodobacter sphaeroides/metabolismoRESUMO
Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.
Assuntos
Ativação do Canal Iônico , Canais de Potássio Shaw , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Canais de Potássio Shaw/química , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Eletricidade EstáticaRESUMO
Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.
RESUMO
Light-harvesting complex II (LHCII) present in plants and green algae absorbs solar energy to promote photochemical reactions. A marine green macroalga, Codium fragile, exhibits the unique characteristic of absorbing blue-green light from the sun during photochemical reactions while being underwater owing to the presence of pigment-altered LHCII called siphonaxanthin-chlorophyll a/b-binding protein (SCP). In this study, we determined the structure of SCP at a resolution of 2.78 Å using cryogenic electron microscopy. SCP has a trimeric structure, wherein each monomer containing two lutein and two chlorophyll a molecules in the plant-type LHCII are replaced by siphonaxanthin and its ester and two chlorophyll b molecules, respectively. Siphonaxanthin occupies the binding site in SCP having a polarity in the trimeric inner core, and exhibits a distorted conjugated chain comprising a carbonyl group hydrogen bonded to a cysteine residue of apoprotein. These features suggest that the siphonaxanthin molecule is responsible for the characteristic green absorption of SCP. The replaced chlorophyll b molecules extend the region of the stromal side chlorophyll b cluster, spanning two adjacent monomers.
RESUMO
Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αß heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment-protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-ß and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC-LH1) complexes.