Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(4): 680-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38036855

RESUMO

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a large network of dopaminergic projections. To dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent G-protein-coupled receptor activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity and signal-to-noise ratio with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.


Assuntos
Dopamina , Núcleo Accumbens , Camundongos , Animais , Núcleo Accumbens/fisiologia , Receptores Dopaminérgicos , Encéfalo , Receptores Acoplados a Proteínas G
2.
Science ; 382(6672): eabq8173, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972184

RESUMO

Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.


Assuntos
Técnicas Biossensoriais , Ilhotas Pancreáticas , Neurônios , Neuropeptídeos , Receptores Acoplados a Proteínas G , Humanos , Fluorescência , Células HEK293 , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Neurônios/química , Córtex Cerebral/química , Animais , Ratos , Ilhotas Pancreáticas/química
3.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662187

RESUMO

Dopamine (DA) plays multiple roles in a wide range of physiological and pathological processes via a vast network of dopaminergic projections. To fully dissect the spatiotemporal dynamics of DA release in both dense and sparsely innervated brain regions, we developed a series of green and red fluorescent GPCR activation-based DA (GRABDA) sensors using a variety of DA receptor subtypes. These sensors have high sensitivity, selectivity, and signal-to-noise properties with subsecond response kinetics and the ability to detect a wide range of DA concentrations. We then used these sensors in freely moving mice to measure both optogenetically evoked and behaviorally relevant DA release while measuring neurochemical signaling in the nucleus accumbens, amygdala, and cortex. Using these sensors, we also detected spatially resolved heterogeneous cortical DA release in mice performing various behaviors. These next-generation GRABDA sensors provide a robust set of tools for imaging dopaminergic activity under a variety of physiological and pathological conditions.

4.
Curr Opin Neurobiol ; 81: 102751, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487399

RESUMO

Neuropeptides comprise the most diverse category of neurochemicals in the brain, playing critical roles in a wide range of physiological and pathophysiological processes. Monitoring neuropeptides with high spatial and temporal resolution is essential for understanding how peptidergic transmission is regulated throughout the central nervous system. In this review, we provide an overview of current non-optical and optical approaches used to detect neuropeptides, including their design principles, intrinsic properties, and potential limitations. We also highlight the advantages of using G protein‒coupled receptor (GPCR) activation‒based (GRAB) sensors to monitor neuropeptides in vivo with high sensitivity, good specificity, and high spatiotemporal resolution. Finally, we present a promising outlook regarding the development and optimization of new GRAB neuropeptide sensors, as well as their potential applications.


Assuntos
Neuropeptídeos , Transdução de Sinais , Transdução de Sinais/fisiologia , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central
5.
Neuron ; 111(10): 1564-1576.e6, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36924772

RESUMO

Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.


Assuntos
Liberação de Histamina , Histamina , Animais , Camundongos , Encéfalo , Hipotálamo , Receptores Acoplados a Proteínas G
6.
Nat Biotechnol ; 41(7): 944-957, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36593404

RESUMO

Oxytocin (OT), a peptide hormone and neuromodulator, is involved in diverse physiological and pathophysiological processes in the central nervous system and the periphery. However, the regulation and functional sequences of spatial OT release in the brain remain poorly understood. We describe a genetically encoded G-protein-coupled receptor activation-based (GRAB) OT sensor called GRABOT1.0. In contrast to previous methods, GRABOT1.0 enables imaging of OT release ex vivo and in vivo with suitable sensitivity, specificity and spatiotemporal resolution. Using this sensor, we visualize stimulation-induced OT release from specific neuronal compartments in mouse brain slices and discover that N-type calcium channels predominantly mediate axonal OT release, whereas L-type calcium channels mediate somatodendritic OT release. We identify differences in the fusion machinery of OT release for axon terminals versus somata and dendrites. Finally, we measure OT dynamics in various brain regions in mice during male courtship behavior. Thus, GRABOT1.0 provides insights into the role of compartmental OT release in physiological and behavioral functions.


Assuntos
Neurônios , Ocitocina , Masculino , Camundongos , Animais , Ocitocina/genética , Encéfalo , Transdução de Sinais , Sistema Nervoso Central
7.
Nat Chem ; 14(9): 1021-1030, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817963

RESUMO

The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established. Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-ß (Aß) and metal-bound Aß (metal-Aß) found as pathological factors in the brains of patients with Alzheimer's disease. These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aß species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes. Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal-Aß under pathological conditions.


Assuntos
Peptídeos beta-Amiloides , Cobre , Somatostatina , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Cobre/química , Humanos , Metais , Somatostatina/química
8.
Nat Neurosci ; 24(5): 746-752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33821000

RESUMO

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.


Assuntos
Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Ratos , Transdução de Sinais/fisiologia
9.
Nat Methods ; 17(11): 1156-1166, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33087905

RESUMO

Dopamine (DA) plays a critical role in the brain, and the ability to directly measure dopaminergic activity is essential for understanding its physiological functions. We therefore developed red fluorescent G-protein-coupled receptor-activation-based DA (GRABDA) sensors and optimized versions of green fluorescent GRABDA sensors. In response to extracellular DA, both the red and green GRABDA sensors exhibit a large increase in fluorescence, with subcellular resolution, subsecond kinetics and nanomolar-to-submicromolar affinity. Moreover, the GRABDA sensors resolve evoked DA release in mouse brain slices, detect evoked compartmental DA release from a single neuron in live flies and report optogenetically elicited nigrostriatal DA release as well as mesoaccumbens dopaminergic activity during sexual behavior in freely behaving mice. Coexpressing red GRABDA with either green GRABDA or the calcium indicator GCaMP6s allows tracking of dopaminergic signaling and neuronal activity in distinct circuits in vivo.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Dopamina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Comportamento Sexual/fisiologia , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteína Vermelha Fluorescente
10.
Nat Methods ; 17(11): 1139-1146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989318

RESUMO

The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.


Assuntos
Acetilcolina/metabolismo , Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Colinérgicos/farmacologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Córtex Olfatório/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Córtex Somatossensorial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA