Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 109667, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38966570

RESUMO

Our work aimed to investigate the interactive roles of transforming growth factor ß1 (TGF-ß1), ubiquitin-specific-processing protease 7 (USP7), and Yes-associated protein (YAP) in ferroptosis during sepsis-secondary acute lung injury (ALI). Our study demonstrated that ferroptosis was aggravated by TGF-ß1 in both cellular and animal models of acute lung injury. Additionally, YAP upregulated glutathione peroxidase 4 (GPX4) and SLC7A11 by regulating the binding of TEAD4 to GPX4/SLC7A11 promoters. Furthermore, large tumor suppressor kinase 1 (LATS1) knockdown resulted in YAP expression stimulation, while USP7 downregulated YAP via deubiquitinating and stabilizing LATS1/2. YAP overexpression or USP7/LATS1 silencing reduced ferroptosis process, which regulated YAP through a feedback loop. However, TGF-ß1 annulled the repression of ferroptosis by YAP overexpression or LATS1/USP7 knockdown. By elucidating the molecular interactions between TGF-ß1, USP7, LATS1/2, and YAP, we identified a new regulatory axis of ferroptosis in sepsis-secondary ALI. Our study sheds light on the pathophysiology of ferroptosis and proposes a potential therapeutic approach for sepsis-induced ALI.

2.
Phytother Res ; 38(6): 3240-3267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739454

RESUMO

Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Polifenóis , RNA Longo não Codificante , RNA Longo não Codificante/genética , Polifenóis/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Animais
3.
J Oleo Sci ; 73(5): 683-693, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522941

RESUMO

In this study, we outlined the green synthesis of Zinc oxide nanoparticles (ZnO NPs) using the plant-mediated method. Employing the nitrate derivative of Zinc and the extract from the native medicinal plant, Ottonia anisum, the nanoparticles were effectively produced. After obtaining a yellow-colored paste, it was meticulously dried, gathered, and set aside for subsequent examination. The UV-visible spectrometry analysis indicated an absorption peak at 320 nm, which is indicative of ZnO NPs. Characterization techniques, such as XRD and HR-TEM, confirmed the existence of agglomerated ZnO NPs with an average diameter of 40 nm. Through EDS analysis, distinct energy signals for both Zinc and Oxygen were observed, confirming their composition. Furthermore, FT-IR spectroscopy highlighted an absorption peak for Zn-O bonding in the range of 400 to 600 cm -1 . Further, we employed three distinct pain models in mice to evaluate the influence of ZnO NPs on the nociceptive threshold. Our findings revealed that, when orally administered, ZnO NPs at concentrations ranging from 5-20 mg/kg exerted a dose-dependent analgesic effect in both the hot-plate and the acetic acid-induced writhing tests. Moreover, when ZnO NPs were administered at doses between 2.5-10 mg/kg, there was a notable reduction in pain responses during both the initial and subsequent phases of the formalin test, but no change in PGE 2 production within the mice's hind paw was found. On the other hand, acute lung injury studies revealed that the administration of ZnO NPs orally 90 minutes prior to HCl instillation decreased the neutrophil infiltration into the lungs in a doseresponsive manner. This reduction in pulmonary inflammation was paralleled by a significant decrease in lung edema, as evidenced by the reduced total protein content in the BALF. Additionally, the ZnO NPs appeared to recalibrate the lung's redox equilibrium following HCl exposure, which was determined through measurements of ROS, malondialdehyde, glutathione, and catalase activity. All these results further indicated the potential of biofabricated ZnO NPs for future applications in analgesics and acute lung injury treatments.


Assuntos
Lesão Pulmonar Aguda , Analgésicos , Extratos Vegetais , Óxido de Zinco , Animais , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Analgésicos/síntese química , Analgésicos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Camundongos , Masculino , Nanopartículas Metálicas/química , Química Verde , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Dor/tratamento farmacológico , Dor/induzido quimicamente , Ácido Acético
4.
J Thorac Dis ; 16(2): 1234-1246, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505042

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is an unrepairable disease that results in lung dysfunction and decreased quality of life. Prevention of pulmonary fibrosis is challenging, while its pathogenesis remains largely unknown. Herein, we investigated the effect and mechanism of long non-coding RNA (lncRNA) DNM3OS/Antisense RNA in the pathogenesis of pulmonary fibrosis. Methods: EdU (5-ethynyl-2'-deoxyuridine) and wound healing assays were employed to evaluate the role of DNM3OS on cell proliferation and migration. Western blot detected the proteins expressions of alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin. The interactions among genes were evaluated by RNA pull-down, luciferase reporter, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and chromatin Isolation by RNA purification (ChIRP) assays. Results: DNM3OS was upregulated by transforming growth factor beta 1 (TGF-ß1) in a dose- and time-dependent manner. DNM3OS knockdown repressed the growth and migration of lung fibroblast, and fibrotic gene expression (CoL1α1, CoL3α1, α-SMA, vimentin, and fibronectin), while suppression of TSC2 accelerated the above process. DNM3OS recruited EZH2 to the promoter region of TSC2, increased the occupancy of EZH2 and H3K27me3, and thereby suppressed the expression of TSC2. HOXA5 promoted the transcription of DNM3OS. Conclusions: HOXA5-induced DNM3OS promoted the proliferation, migration, and expression of fibrosis-related genes in human embryo lung fibroblast via recruiting EZH2 to epigenetically suppress the expression of TSC2.

5.
Bioengineered ; 13(4): 8382-8395, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353027

RESUMO

The exosomes (Exo) had always been considered as transport vectors for microRNA (miRNA). An increasing number of data had clarified the influence of Exo on the cell progression of non-small cell lung cancer (NSCLC). Nevertheless, its specific mechanism had not yet been verified. This work was to explore the potential mechanism of Exo-derived miR-631 targeting and regulating E2F family of transcription factor 2 (E2F2) to repress the malignant behavior of NSCLC cells. Test of microRNA (miR)-631 and E2F2 in NSCLC was performed. BMSCs-Exo that altered miR-631 was co-cultured with NSCLC cells. Detection of the cloning and progression of NSCLC cells was performed. Testification of the targeting of miR-631 with E2F2 was conducted. In vivo experiments were performed to verify the results in vitro. In short, elevation of miR-631 Exo repressed the advancement and phosphatidylinositol 3-kinase/Akt activation of NSCLC cells, while silence of miR-631 was in the opposite. In terms of mechanism, miR-631 exerted the influence via targeting E2F2. The coincident results were obtained in animal models. In brief, BMSC-Exo mediated E2F2 via delivering miR-631 to NSCLC cells to modulate the malignant behavior of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
6.
Pak J Med Sci ; 32(3): 700-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375717

RESUMO

OBJECTIVE: To investigate the serum levels of Interleukin (IL)-17 and eotaxin levels and the relationship between serum IL-17, eotaxin and pulmonary function in asthmatic patients with allergic rhinitis. METHODS: Serum IL-17 and eotaxin levels in asthmatic patients with allergic rhinitis during attacking and remission and in healthy control subjects were measured using enzyme-linked immunosorbent assay (ELISA) kits. Then we studied the correlation between the serum IL-17, eotaxin levels and pulmonary function in patients. RESULTS: Serum IL-17 and eotaxin levels were significantly elevated in patients during asthma attack and remission compared with healthy control subjects. These levels in patients during asthma attack were much higher than those during remission. Furthermore, serum IL-17 and eotaxin levels were negatively correlated with pulmonary function in asthmatic patients with allergic rhinitis, respectively. CONCLUSION: Our findings suggest that IL-17 and eotaxin are important factors in asthma with allergic rhinitis, and the correlation between serum IL-17, eotaxin and lung function possibly lead to improvements in the diagnosis and treatment of asthma with allergic rhinitis and related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA