RESUMO
Hypericum japonicum is a traditional folk medicine with various bioactivities such as hepatoprotective, antioxidant, and anti-tumorous. The antioxidant effect of H. japonicum is one of the most prominent effects due to its responsibility for many of its activities. To clarify active natural substance, the antioxidant properties of H. japonicum were preliminarily assessed by ferric reducing-antioxidant power (FRAP), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and Oxygen radical absorbance capacity (ORAC), as well as superoxide dismutase (SOD). Then, a straightforward and effective method named online liquid extraction-high performance liquid chromatography combined with ABTS antioxidant assay and mass spectrometry (OLE-HPLC-ABTS/Q-TOF-MS) was developed to swiftly and directly discover the antioxidants in H. japonicum. Using mobile phase as extraction and separation reagent, coupled with online activity analysis and compounds identification by high-resolution MS, the online system enables rapid screening of natural antioxidant bioactives from complex mixture. By using it, a total of 9 compounds including flavonoids and phenolic acids characterized by retention time, precise mass, and fragmentation ions in MS/MS spectra showed antioxidant action. Finally, the antioxidant and SOD activity of main found active compounds were validated by in vitro experiment assay and molecular docking. In summary, these results suggested that H. japonicum could be considered as a potential source of natural antioxidants, and the online integrated system might become a promising candidate for the natural antioxidants discovery in the future.
RESUMO
Rational regulation of pH and xanthan gum (XG) concentration has the potential to modulate interactions among macromolecules and enhance 3D printability. This study investigated non-covalent interactions between XG and other components within compound proteins emulsion gel systems across varying pH values (4.0-8.0) and XG concentrations (0-1 wt%) and systematically explored impacts of gelation properties and structural features on 3D printability. The results of rheological and structural features indicated that pH-regulated non-covalent interactions were crucial for maintaining structural stability of emulsion gels with the addition of XG. The 3D printability of emulsion gels would be significantly improved through moderate depletion flocculation produced when XG concentration was 0.75 wt% at the pH 6.0. Mechanical properties like viscosity exhibited a strongly negative correlation with 3D printability, whereas structural stability showed a significantly positive correlation. Overall, this study provided theoretical insights for the development of emulsion gels for 3D printing by regulating non-covalent interactions.
Assuntos
Emulsões , Géis , Polissacarídeos Bacterianos , Impressão Tridimensional , Reologia , Polissacarídeos Bacterianos/química , Emulsões/química , Géis/química , Concentração de Íons de Hidrogênio , ViscosidadeRESUMO
Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.
RESUMO
Although magnesium alloy has received tremendous attention in biodegradable cardiovascular stents, the poor in vivo corrosion resistance and limited endothelialization are still the bottlenecks for its application in cardiovascular stents. Fabrication of the multifunctional bioactive coating with excellent anti-corrosion on the surface is beneficial for rapid re-endothelialization and the normal physiological function recovery of blood vessels. In the present study, a bioactive hydrogel coating was established on the surface of magnesium alloy by copolymerization of sulfobetaine methacrylate (SBMA) and acrylamide (AM) via ultraviolet (UV) polymerization, followed by the immobilization of fucoidan (Fu). The results showed that the as-prepared multifunctional hydrogel coating could enhance the corrosion resistance and the surface wettability of the magnesium alloy surface, endowing it with the ability of selective albumin adsorption; meanwhile, it could augment biocompatibility. The following introduction of fucoidan on the surface could further improve the hemocompatibility characterized by reducing protein adsorption, minimizing hemolysis, and preventing platelet aggregation and activation. Additionally, the immobilized fucoidan promoted endothelial cell (EC) growth, as well as up-regulated the expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO) in endothelial cells (ECs). Consequently, this research paves a novel approach to developing a versatile bioactive coating for magnesium alloy surfaces and lays a foundation in cardiovascular biomaterials.
Assuntos
Ligas , Materiais Revestidos Biocompatíveis , Hidrogéis , Magnésio , Polissacarídeos , Stents , Polissacarídeos/farmacologia , Polissacarídeos/química , Magnésio/química , Magnésio/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Ligas/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Teste de Materiais , Células Endoteliais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Propriedades de Superfície , Óxido Nítrico/metabolismoRESUMO
BACKGROUND: Previous studies have shown the associations between smoking and failure to eradicate Helicobacter pylori (H. pylori), but less is known about the impact of secondhand tobacco smoke (SHS) on H. pylori eradication. METHODS: Between July 2022 to July 2023, 646 patients who received proton pump inhibitor (PPIs) as first-line H. pylori eradication therapy were recruited for the study. Information was obtained via the hospital database and a telephone questionnaire. Univariate and multivariate regression analysis were used to examine risk factors of H. pylori eradication failure. RESULTS: This was a single-center retrospective study consisting of 646 patients who received PPIs as first-line H. pylori eradication therapy. This included 122 smokers, 165 never-smokers with SHS, and 359 never-smokers with no SHS exposure. Compared with subjects in the "eradication success" group, those in the "eradication failure" group tended to have higher prevalence of smoke consumption and have higher prevalence of SHS exposure. In binary logistic regression analysis, smoking (OR 3.409, 95 % CI: 1.782- 6.522, P < 0.001) and SHS (OR 3.188, 95 % CI: 1.726-5.886, P < 0.001) were independent predictors of eradication failure. In addition, never-smokers with SHS exposure and smoking had similar effects on H. pylori eradication (OR, 0.893; 95 % CI, 0.464 to 1.717, P value = 0.734). CONCLUSION: Both smoking and SHS are independent risk factors for H. pylori eradication failure. Furthermore, the impact of SHS is not inferior to smoking.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Inibidores da Bomba de Prótons , Fumar , Poluição por Fumaça de Tabaco , Falha de Tratamento , Humanos , Infecções por Helicobacter/tratamento farmacológico , Masculino , Feminino , Poluição por Fumaça de Tabaco/efeitos adversos , Estudos Retrospectivos , Pessoa de Meia-Idade , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/efeitos adversos , Fumar/efeitos adversos , Idoso , Adulto , Fatores de Risco , Antibacterianos/uso terapêuticoRESUMO
Objective: Subthreshold depression (StD)/subsyndromal depression refers to a threatening precursor to depression. Aerobic exercise is a promising self-supportive adjunctive intervention and an effective measure for StD. Our study utilizes regional homogeneity (ReHo) to investigate the impact of aerobic exercise on resting-state brain function. Methods: A total of 78 subjects, aged between 18 and 48 years, (StD group, n = 44; healthy control (HC) group, n = 34) engaged in moderate-intensity aerobic exercise 3-4 times per week for 8 weeks. Resting-state brain function and structural images were acquired before and after the exercise intervention. The ReHo method was employed to analyze abnormal changes in regional brain function, and a correlation analysis was performed using the Patient Health Questionnaire-9 (PHQ-9) and Self-Rating Anxiety Scale (SAS) scores. Results: The principal observation reveals synchronous abnormalities in the right anterior cingulate gyrus of the brain in StD subjects compared to HCs at baseline, with these differences dissipating after the implementation of aerobic exercise. After completing the aerobic exercise program, the StD group exhibited a difference in the right middle cingulate gyrus, while the left supplementary motor area (SMA) was altered in the HC group. Conclusion: Disparities in neural synchronization are evident between HCs and StD subjects, and the implementation of aerobic exercise intervention can effectively mitigate these distinctions, leading to a significant reduction in depressive symptoms among StD subjects. The primary mechanism of StD symptoms may involve the inhibition of the anterior cingulate gyrus, while the effects of aerobic exercise may be related to the modulation of neural synchronization of emotional reflexes. The discovery of these fMRI evidence findings may offer novel strategies for early detection and intervention in cases of StD.
RESUMO
The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.
Assuntos
Arsênio , Clorofilídeos , Porfirinas , Humanos , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Espectrometria de Fluorescência , Corantes Fluorescentes/químicaRESUMO
Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Mutação , Neoplasias/tratamento farmacológico , Terapia Combinada , ImunoterapiaRESUMO
Channel-regulated peptides (CRPs) derived from animal venom hold great promise as potential drug candidates for numerous diseases associated with channel proteins. However, discovering and identifying CRPs using traditional bio-experimental methods is a time-consuming and laborious process. While there were a few computational studies on CRPs, they were limited to specific channel proteins, relied heavily on complex feature engineering, and lacked the incorporation of multi-source information. To address these problems, we proposed a novel deep learning model, called DeepCRPs, based on graph neural networks for systematically mining CRPs from animal venom. By combining the sequence semantic and structural information, the classification performance of four CRPs was significantly enhanced, reaching an accuracy of 0.92. This performance surpassed baseline models with accuracies ranging from 0.77 to 0.89. Furthermore, we employed advanced interpretable techniques to explore sequence and structural determinants relevant to the classification of CRPs, yielding potentially valuable bio-function interpretations. Comprehensive experimental results demonstrated the precision and interpretive capability of DeepCRPs, making it an accurate and bio-explainable suit for the identification and categorization of CRPs. Our research will contribute to the discovery and development of toxin peptides targeting channel proteins. The source data and code are freely available at https://github.com/liyigerry/DeepCRPs.
Assuntos
Semântica , Peçonhas , Animais , Peptídeos , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Although the indoor environment has been proposed to be associated with childhood sleep health, to our knowledge no study has investigated the association between home renovation and childhood sleep problems. METHODS: The study included 186,470 children aged 6-18 years from the National Chinese Children Health Study (2012-2018). We measured childhood sleeping problems via the Chinese version of the Sleep Disturbance Scale for Children (C-SDSC). Information on home renovation exposure within the recent 2 years was collected via parent report. We estimated associations between home renovation and various sleeping problems, defined using both continuous and categorized (binary) C-SDSC t-scores, using generalized mixed models. We fitted models with city as a random effect variable, and other covariates as fixed effects. RESULTS: Out of the overall participants, 89,732 (48%) were exposed to recent home renovations. Compared to the unexposed group, children exposed to home renovations had higher odds of total sleep disorder (odd ratios [OR] = 1.3; 95% confidence interval [CI] = 1.2, 1.4). Associations varied when we considered different types of home renovation materials. Children exposed to multiple types of home renovation had higher odds of sleeping problems. We observed similar findings when considering continuous C-SDSC t-scores. Additionally, sex and age of children modified the associations of home renovation exposure with some of the sleeping problem subtypes. CONCLUSIONS: We found that home renovation was associated with higher odds of having sleeping problems and that they varied when considering the type of renovation, cumulative exposure, sex, and age differences.
Assuntos
Convulsões , Transtornos do Sono-Vigília , Criança , Humanos , Inquéritos e Questionários , Cidades , China/epidemiologia , Transtornos do Sono-Vigília/epidemiologiaRESUMO
To reveal the utilization value of leaf, stem, and root of Artemisia argyi, a rapid online liquid microextraction combined with a high-performance liquid chromatography coupled with 2,2-nitrogen-di (3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt antioxidant assay system was established for analysis of antioxidants in the leaf, stem, and root of A. argyi, and a calibration quantitative method of antioxidant activity with equivalent chlorogenic acid was proposed. Thirty-three positive peaks were identified; among them, 12 compounds were found that possess good antioxidant activity including eleven organic acids (components 2-4, 8, 11-14, 17, 19, and 21) and one flavonoids (component 22). The proposed calibration quantitative method avoided the influence of content of compound and compared the extent of radical scavenging capacity of five antioxidant compounds, which were ranked as follow: 3,5-dicaffeoylquinic acid > 3,4-dicaffeoylquinic acid ≈ 4,5-dicaffeoylquinic acid > 1,4-dicaffeoylquinic acid > chlorogenic acid. In conclusion, this study provided composition and biological potential for the future development of the leaf, stem, and root of A. argyi. It is believed that the online liquid microextraction combined with high-performance liquid chromatography based antioxidant assay system can be widely used for the rapid screening of natural antioxidant components in the different parts of natural products.
Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Antioxidantes/análise , Medicamentos de Ervas Chinesas/análise , Artemisia/química , Ácido Clorogênico/análise , Calibragem , Folhas de Planta/químicaRESUMO
Developing efficient oxygen evolution reaction (OER) electrocatalysts can greatly advance the commercialization of proton exchange membrane (PEM) water electrolysis. However, the unclear and disputed reaction mechanism and structure-activity relationship of OER pose significant obstacles. Herein, the active site and intermediate for OER on AuIr nanoalloys are simultaneously identified and correlated with the activity, through the integration of in situ shell-isolated nanoparticle-enhanced Raman spectroscopy and X-ray absorption spectroscopy. The AuIr nanoalloys display excellent OER performance with an overpotential of only 246 mV to achieve 10 mA cm-2 and long-term stability under strong acidic conditions. Direct spectroscopic evidence demonstrates that *OO adsorbed on IrOx sites is the key intermediate for OER, and it is generated through the O-O coupling of adsorbed oxygen species directly from water, providing clear support for the adsorbate evolution mechanism. Moreover, the Raman information of the *OO intermediate can serve as a universal "in situ descriptor" that can be obtained both experimentally and theoretically to accelerate the catalyst design. It unveils that weakening the interactions of *OO on the catalysts and facilitating its desorption would boost the OER performance. This work deepens the mechanistic understandings on OER and provides insightful guidance for the design of more efficient OER catalysts.
RESUMO
A new lithophytic species, Paraboeazunyiensis T.Deng, F.Wen & R.B.Zhang (Gesneriaceae), inhabiting Karst rocks in northern Guizhou, China, is introduced and depicted in this study. It bears a resemblance to P.crassifolia (Hemsl.) B.L. Burtt, yet is distinguishable by its shorter filaments and staminodes, triangular ovate calyx segments, and ovaries surpassing the styles in length. Moreover, the phylogenetic tree constructed from nuclear DNA (ITS) and plastid DNA (trnL-F) data firmly support the differentiation of this novel species from P.crassifolia.
RESUMO
As a result of climate change and rapid urbanization, urban waterlogging commonly caused by rainstorm, is becoming more frequent and more severe in developing countries. Urban waterlogging sometimes results in significant financial losses as well as human casualties. Accurate waterlogging depth prediction is critical for early warning system and emergency response. However, the existing hydrological models need to obtain more abundant hydrological data, and the model construction is complicated. The waterlogging depth prediction technology based on object detection model are highly dependent on image data. To solve the above problem, we propose a novel approach based on Temporal Convolutional Networks and Long Short-Term Memory networks to predicting urban waterlogging depth with Waterlogging Monitoring Station. The difficulty of data acquisition is small though Waterlogging Monitoring Station and TCN-LSTM model can be used to predict timely waterlogging depth. Waterlogging Monitoring Station is developed which integrates an automatic rain gauge and a water gauge. The rainfall and waterlogging depth can be obtained by periodic sampling at some areas with Waterlogging Monitoring Station. Precise hydrological data such as waterlogging depth and rainfall collected by Waterlogging Monitoring Station are used as training samples. Then training samples are used to train TCN-LSTM model, and finally a model with good prediction effect is obtained. The experimental results show that the difficulty of data acquisition is small, the complexity is low and the proposed TCN-LSTM hybrid model can properly predict the waterlogging depth of the current regional. There is no need for high dependence on image data. Meanwhile, compared with machine learning model and RNN model, TCN-LSTM model has higher prediction accuracy for time series data. Overall, the low-cost method proposed in this study can be used to obtain timely waterlogging warning information, and enhance the possibility of using existing social networks and traffic surveillance video systems to perform opportunistic waterlogging sensing.
Assuntos
Urbanização , Água , Humanos , ChuvaRESUMO
Cordyceps sinensis is a precious medicinal food which has been successfully cultivated indoors. It remains to be investigated for a simultaneous comparison on aqueous components of natural and cultivated samples. Herein, an approach of quantitative nuclear magnetic resonance (qNMR) analysis combined with global spectral deconvolution (GSD) was established for simultaneous quantification of 26 aqueous components in C. sinensis. Processed by GSD, the distorted baselines of 1H NMR spectra were greatly improved, and overlapped signals were also well separated so as to achieve accurate identification and quantitation of components in C. sinensis. Method validation by UHPLC-QTOF-MS and TOF-SIMS analysis revealed that qNMR combined with GSD is a reliable approach for simultaneous quantification of multiple components including characteristic markers of glutamine, GABA and trehalose in authentic and fake C. sinensis. The well-established qNMR approach can be used for quality assessment of natural and cultivated C. sinensis as well as differentiation from fake ones.
Assuntos
Cordyceps , Cordyceps/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , ÁguaRESUMO
Fraxini Cortex is a traditional Chinese herbal medicine that has been used for thousands of years to treat dampness-heat diarrhea, dysentery, red or white vaginal discharge, painful swelling or redness of the eyes, and nebula. It contains various chemical components, including coumarins, iridoids, phenolic acids, and flavonoids. Coumarins are important active ingredients in Fraxini Cortex and have antibacterial, anti-inflammatory, antioxidant, antitumor, and antiviral activities. Aesculin and aesculetin are two major coumarin components of Fraxini Cortex that are widely used in its quality evaluation. Previous HPLC methods for determination of aesculin and aesculetin present several limitations, such as long analysis times and high solvent and reference compound consumption. In this study, a rapid, eco-friendly and cost saving HPLC method for the determination of aesculin and aesculetin in Fraxini Cortex was established by using the core-shell column and equal absorption wavelength (EAW). Different factors influencing the extraction process, such as the extraction solvent, temperature, and time, were assessed to obtain the optimal extraction conditions. The results showed that Fraxini Cortex samples could be well extracted by ultrasonic extraction for 5 min with a 25% ethanol aqueous solution. A core-shell column was used, and different mobile phases and flow rates were investigated to obtain the best rapid-HPLC separation conditions. The optimized HPLC conditions were as follows: a Poroshell 120 EC-C18 column (50 mm×4.6 mm, 2.7 µm), acetonitrile-0.1% formic acid aqueous solution (6â¶94, v/v) as the eluent, a flow rate of 1.5 mL/min, and a column temperature of 25 â. The EAW of aesculin and aesculetin was a key factor in their determination using a single reference compound. EAW selection was performed in two steps. First, the UV spectra of two equimolar concentrations of the reference compounds (aesculin and aesculetin) were compared to determine the EAW of the two analytes. The EAW results were then verified by the HPLC analysis of the reference compound solutions. The final EAW of aesculin and aesculetin was 341 nm. The determination of aesculin and aesculetin using only one reference compound (i. e., aesculin) was achieved by HPLC-UV at this EAW. The newly developed HPLC method revealed a good linear relationship between the two target analytes (r=1.0000). The limits of detection (LODs) and limits of quantification (LOQs) were 1.5 µmol/L and 3.0 µmol/L, respectively, and the average recoveries of aesculin and aesculetin were 99.0% and 97.5%. The stabilities of the sample solutions were examined, and the two analytes demonstrated good stability for 24 h. The contents of the target analytes in 10 batches of Fraxini Cortex were determined using the proposed EAW method and the classic external standard method (ESM), and comparable concentrations were obtained. The contents of aesculin and aesculetin in the 10 batches of Fraxini Cortex were 0.26%-2.80% and 0.11%-1.47%, respectively. A t-test was conducted to compare the results of the proposed EAW technique with those obtained via the method reported in the Chinese Pharmacopoeia, and no significant difference between the two assay methods was noted (P>0.05). Comparison of the newly established EAW method with those reported in the literature revealed that our method required only 10 min to complete and used as little as 0.5 mL of the solvent and only one standard. Therefore, the developed EAW method is a rapid, simple, eco-friendly, and cost-effective analytical method that is suitable for the determination of aesculin and aesculetin in Fraxini Cortex and its related products. The proposed technique is an improved method for determining aesculin and aesculetin and contributes to the enhancement of the quality evaluation of Fraxini Cortex.
Assuntos
Medicamentos de Ervas Chinesas , Esculina , Feminino , Humanos , Esculina/análise , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Cumarínicos , SolventesRESUMO
Chinese cordyceps, also known as Dong-Chong-Xia-Cao, is widely recognized as a famous precious tonic herb, and used as traditional Chinese medicine for centuries. It is mainly used for regulating the immune system and improving functions of the lung and kidney, with anti-tumor, anti-inflammatory, and anti-diabetic activities. Due to its rarity and preciousness, a few chemical components are isolated and identified. Moreover, most of them are common chemical components and widely distributed in other natural resources, such as nucleosides, sterols, fatty acids, sugar alcohols, and peptides. Therefore, a large number of active substances of Chinese cordyceps is still unclear. During our search for chemical constituents of Chinese cordyceps, a new thiazole alkaloid, cordythiazole A (1), was isolated and identified. Its structure was elucidated by comprehensive spectroscopic analysis and single-crystal X-ray diffraction analysis. This is the first report of the presence of thiazole alkaloid in Chinese cordyceps, which adds a new class of metabolite of Chinese cordyceps. Furthermore, a putative biosynthesis pathway of cordythiazole A was proposed based on possible biogenic precursor, genes, and literatures. In addition, it showed α-glucosidase inhibitory activity with potency close to that of acarbose. The discovery of cordythiazole A with α-glucosidase inhibitory activity adds a new class of potential anti-diabetes ingredient in Chinese cordyceps.
Assuntos
Alcaloides , Antineoplásicos , Cordyceps , Cordyceps/química , alfa-Glucosidases , Alcaloides/farmacologiaRESUMO
This study was envisaged to identify a strain of bacteria isolated from the gill of mandarin fish. Identification and characterization of the bacterial strain were performed using morphological characteristics, growth temperature, physiological and biochemical tests, antibiotic sensitivity tests, artificial infection tests, and 16S rRNA gene sequencing homology analysis. The results showed that the bacterium was Gram-negative, with flagella at the end and the side. The bacterium exhibited a light brownish-gray colony on the Luria-Bertani culture and white colony on the blood agar plate without hemolytic ring. Normal growth was achieved at 42°C, and growth could be delayed in 7% NaCl broth medium. By homology comparison and analysis, the phylogenetic tree was constructed using MEGA7.0, and the bacterium was preliminarily identified as Achromobacter. The antibiotic sensitivity test showed that the strain was sensitive to piperacillin, carbenicillin, cefoperazone, cefazolin, ofloxacin, gentamicin, kanamycin, amikacin, neomycin, erythromycin, minocycline, doxycycline, polymyxin B, tetracycline, chloramphenicol, and other drugs. However, it was resistant to penicillin, ampicillin, oxacillin, ceftriaxone, cefradine, cefalexin, cefuroxime sodium, ciprofloxacin, norfloxacin, vancomycin, compound sulfamethoxazole, clindamycin, medimycin, and furazolidone.
RESUMO
Integrating mechanical computing functions into robotic materials, microelectromechanical systems, or soft robotics can improve their intelligence in stimulation-response processes. Current mechanical computing systems exhibit limitations, including incomplete functions, unchangeable computing rules, difficulties in realizing random logic, and lack of reusability. To overcome these limitations, we propose a straightforward method of designing mechanical computing systems-based on the logic expressions-for complex computations. We designed soft, B-shaped mechanical metamaterial units, and compressed them to render stress inputs; the outputs are represented by the light-shielding effects caused by the unit deformations. We realized logic gates and corresponding combinations (including half/full binary adder/subtractor and addition/subtraction of 2 numbers with multiple bits) and provided a versatile solution for making a mechanical analog-to-digital converter to generate both ordered and disordered numbers. We performed all of the computations within the elastic regions of the B-shaped units; thus, after one computation, the systems can return to the initial states for reuse. The proposed mechanical computers will potentially enable robotic materials, microelectromechanical systems, or soft robotics to perform complex tasks. Furthermore, one can extend this concept to systems that are based on other mechanisms or materials.
RESUMO
Polygonum viviparum L. (PV) is a widely used resource plant with high medicinal, feeding and ecological values. Our studies show that PV has strong antioxidant activity. However, up to date, the antioxidant activity and components in other parts were not fully elucidated. In the present study, a new online pre-column ferric ion reducing antioxidant power (FRAP)-based antioxidant reaction coupled with high performance liquid chromatography-diode array detector-quadrupole-time-of-flight mass spectrometry (HPLC-DAD-TOF/MS) was developed for rapid and high-throughput screening of natural antioxidants from three different parts of PV including stems and leaves, fruits and rhizomes. In this procedure, it was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be greatly diminished or vanish after incubating with the FRAP. The online incubation conditions including mixed ratios of sample and FRAP solution and reaction times were firstly optimized with six standards. Then, the repeatability of the screening system was evaluated by analysis of the samples of stems and leaves of PV. As a result, a total of 21 compounds mainly including flavonoids and phenolic acids were screened from the three parts of PV. In conclusion, the present study provided a simple and effective strategy to rapidly screen antioxidants in natural products.