Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159514, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795827

RESUMO

Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). Profound alterations in lipid metabolism, including increases in fatty acid oxidation and transformation of the phospholipidome, occur in HCC with CTNNB1 mutations, but it is unclear what mechanisms give rise to these changes. We employed untargeted lipidomics and targeted isotope tracing to measure phospholipid synthesis activity in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid isotope tracing analysis in human cells revealed a reduction in phosphatidylcholine (PC) production rates as assayed by choline incorporation. We developed lipid isotope tracing analysis for zebrafish tumors and observed reductions in phosphatidylcholine synthesis by both the CDP-choline and PEMT pathways. The observed changes in the ß-catenin-driven HCC phospholipidome suggest that zebrafish can recapitulate conserved features of HCC lipid metabolism and may serve as a model for identifying future HCC-specific lipid metabolic targets.

2.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37904922

RESUMO

Background and Aims: Activating mutations in the CTNNB1 gene encoding ß-catenin are among the most frequently observed oncogenic alterations in hepatocellular carcinoma (HCC). HCC with CTNNB1 mutations show profound alterations in lipid metabolism including increases in fatty acid oxidation and transformation of the phospholipidome, but it is unclear how these changes arise and whether they contribute to the oncogenic program in HCC. Methods: We employed untargeted lipidomics and targeted isotope tracing to quantify phospholipid production fluxes in an inducible human liver cell line expressing mutant ß-catenin, as well as in transgenic zebrafish with activated ß-catenin-driven HCC. Results: In both models, activated ß-catenin expression was associated with large changes in the lipidome including conserved increases in acylcarnitines and ceramides and decreases in triglycerides. Lipid flux analysis in human cells revealed a large reduction in phosphatidylcholine (PC) production rates as assayed by choline tracer incorporation. We developed isotope tracing lipid flux analysis for zebrafish and observed similar reductions in phosphatidylcholine synthesis flux accomplished by sex-specific mechanisms. Conclusions: The integration of isotope tracing with lipid abundances highlights specific lipid class transformations downstream of ß-catenin signaling in HCC and suggests future HCC-specific lipid metabolic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA