Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585866

RESUMO

Traumatic spinal cord injury (SCI) leads to the disruption of neural pathways, causing loss of neural cells, with subsequent reactive gliosis and tissue scarring that limit endogenous repair. One potential therapeutic strategy to address this is to target reactive scar-forming astrocytes with direct cellular reprogramming to convert them into neurons, by overexpression of neurogenic transcription factors. Here we used lentiviral constructs to overexpress Ascl1 or a combination of microRNAs (miRs) miR124, miR9/9*and NeuroD1 transfected into cultured and in vivo astrocytes. In vitro experiments revealed cortically-derived astrocytes display a higher efficiency (70%) of reprogramming to neurons than spinal cord-derived astrocytes. In a rat cervical SCI model, the same strategy induced only limited reprogramming of astrocytes. Delivery of reprogramming factors did not significantly affect patterns of breathing under baseline and hypoxic conditions, but significant differences in average diaphragm amplitude were seen in the reprogrammed groups during eupneic breathing, hypoxic, and hypercapnic challenges. These results show that while cellular reprogramming can be readily achieved in carefully controlled in vitro conditions, achieving a similar degree of successful reprogramming in vivo is challenging and may require additional steps.

2.
Cytoskeleton (Hoboken) ; 81(1): 41-46, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702426

RESUMO

The work of the Gulf War Illness (GWI) Consortium and that of basic and clinical researchers across the USA have resulted in a better understanding in recent years of the pathological basis of GWI, as well as of the mechanisms underlying the disorder. Among the most concerning symptoms suffered by veterans with GWI are cognitive decrements including those related to memory functioning. These decrements are not severe enough to meet dementia criteria, but there is significant concern that the mild cognitive impairment of these veterans will progress to dementia as they become older. Recent studies on GWI using human brain organoids as well as a rat model suggest that one potential cause of the cognitive problems may be elevated levels of tau in the brain, and this is supported by high levels of tau autoantibodies in the blood of veterans with GWI. There is urgency in finding treatments and preventive strategies for these veterans before they progress to dementia, with added value in doing so because their current status may represent an early phase of tauopathy common to many neurodegenerative diseases.


Assuntos
Demência , Síndrome do Golfo Pérsico , Tauopatias , Veteranos , Humanos , Ratos , Animais , Síndrome do Golfo Pérsico/diagnóstico , Síndrome do Golfo Pérsico/terapia , Encéfalo
3.
Cytoskeleton (Hoboken) ; 81(1): 57-62, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819557

RESUMO

Tau, one of the most abundant microtubule-associated protein in neurons plays a role in regulating microtubule dynamics in axons, as well as shaping the overall morphology of the axon. Recent studies challenge the traditional view of tau as a microtubule stabilizer and shed new light on the complexity of its role in regulating various properties of the microtubule. While reducing tau levels shows therapeutic promise for early tauopathies, efficacy wanes in later stages due to resilient toxic tau aggregates and neurofibrillary tangles. Notably, tauopathies involve factors beyond toxic tau alone, necessitating a broader therapeutic approach. Overexpression of human tau in mouse models, although useful for answering some questions, may not accurately reflect disease mechanisms in patients with tauopathies. Furthermore, the interplay between tau and MAP6, another microtubule-associated protein, adds complexity to tau's regulation of microtubule dynamics. Tau promotes the formation and elongation of labile microtubule domains, vital for cellular processes, while MAP6 stabilizes microtubules. A delicate balance between these proteins is important for neuronal function. Therefore, tau reduction therapies require a comprehensive understanding of disease progression, considering functional tau loss, toxic aggregates, and microtubule dynamics. Stage-dependent application and potential unintended consequences must be carefully evaluated. Restoring microtubule dynamics in late-stage tauopathies may necessitate alternative strategies. This knowledge is valuable for developing effective and safe treatments for tauopathies.


Assuntos
Tauopatias , Proteínas tau , Camundongos , Animais , Humanos , Proteínas tau/genética , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Axônios
4.
Stem Cells ; 42(2): 107-115, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37995336

RESUMO

Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we have developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tauP301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, the tauP301S assembloids showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tauopatias , Humanos , Encéfalo , Sistema Nervoso Central , Organoides , Células Endoteliais da Veia Umbilical Humana
5.
Macromol Rapid Commun ; 45(5): e2300506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134364

RESUMO

Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.


Assuntos
Estruturas Metalorgânicas , Compostos Azo , Benzeno , Luz
6.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425812

RESUMO

Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we've developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs™), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tau P301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, they showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders. Significance Statement: Modeling neurodegeneration in human in vitro systems has proved challenging and requires innovative tissue engineering techniques to create systems that can accurately capture the physiological features of the CNS to enable the study of disease processes. The authors develop a novel assembloid model which integrates neuroectodermal cells with endothelial cells and microglia, two critical cell types that are commonly missing from traditional organoid models. They then apply this model to investigate early manifestations of pathology in the context of tauopathy and uncover early astrocyte and microglia reactivity as a result of the tau P301S mutation.

7.
Neural Regen Res ; 18(12): 2727-2732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37449637

RESUMO

Fidgetin, a microtubule-severing enzyme, regulates neurite outgrowth, axonal regeneration, and cell migration by trimming off the labile domain of microtubule polymers. Because maintenance of the microtubule labile domain is essential for axon initiation, elongation, and navigation, it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury. In this study, we constructed rat models of spinal cord injury and sciatic nerve injury. Compared with spinal cord injury, we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased, whereas fidgetin decreased after peripheral nerve injury. Depletion of fidgetin enhanced axon regeneration after spinal cord injury, whereas expression level of end binding protein 3 (EB3) markedly increased. Next, we performed RNA interference to knockdown EB3 or fidgetin. We found that deletion of EB3 did not change fidgetin expression. Conversely, deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3. Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules. Finally, we deleted EB3 and overexpressed fidgetin. We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3. When fidgetin was deleted, the labile portion of microtubules was elongated, and as a result the length of axons and number of axon branches were increased. These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury. Furthermore, they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules.

9.
Exp Neurol ; 361: 114315, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586551

RESUMO

Neurons require a constant increase in protein synthesis during axonal growth and regeneration. AKT-mTOR is a central pathway for mammalian cell survival and regeneration. Fidgetin (Fign) is an ATP-dependent microtubule (MT)-severing enzyme whose functions are associated with neurite outgrowth, axon regeneration and cell migration. Although most previous studies have indicated that depletion of Fign is involved in those biological activities by increasing labile MT mass, it remains unknown whether mTOR activation contributes to this process. Here, we showed that depletion of Fign enhanced p-mTOR/p-S6K activation, and the mTOR inhibitor Rapamycin inhibited axon outgrowth and p-rpS6 activation. We then investigated the effects of neuronal-specific Fign deletion in a rat spinal cord hemisection model by injecting syn-GFP Fign shRNA virus. BBB values revealed an improvement in functional recovery. The p-mTOR was activated along with neuronal Fign depletion. The syn-mCherry virus showed more sprouting neurites entering the injury region, which was confirmed by immunostaining GAP43 protein. Further, we showed that Fign siRNA treatment promoted axon outgrowth and branching, whose underlying mechanism was firstly attributed to local activation of the mTOR pathway, and increased MT dynamicity. Finally, considering L-leucine, promotes axonal growth and neuronal survival, we applied L-leucine with Fign depletion after spinal cord injury or in chondroitin sulfate proteoglycan inhibitory molecules. The phenomenon of synergistically augmented axon regeneration was observed. In summary, our results indicated a novel local mTOR pathway for fidgetin to impact axon growth and provided a combined strategy in SCI.


Assuntos
Axônios , Traumatismos da Medula Espinal , Ratos , Animais , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Leucina/metabolismo , Leucina/farmacologia , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mamíferos
10.
J Tissue Eng ; 13: 20417314221113391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898331

RESUMO

Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.

11.
Anal Methods ; 14(12): 1254-1260, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266457

RESUMO

Dibenzothiophene and its derivatives in gasoline and diesel would release sulfur oxides during combustion, and this is harmful to human health and the environment. This paper reports a method based on a visible-light-responsive molecularly imprinted polyurethane (VMIPU) to monitor trace dibenzothiophene in gasoline. The VMIPU was prepared by a polyaddition reaction using N,N-bis-(2-hydroxyethyl)-4-phenylazoaniline as the functional monomer, dibenzothiophene as the template molecule, diphenylmethane diisocyanate as the crosslinker and castor oil as the chain extender. The VMIPU showed good visible-light-response and specific adsorption for dibenzothiophene. The trans → cis photoisomerization rate constant of azobenzene chromophores in the VMIPU shows a linear relationship with the dibenzothiophene concentration in the range of 0-20 µmol L-1. This was used to estimate trace dibenzothiophene in spiked gasoline with recoveries of 95.7-101.0% and relative standard deviations of 7.0-12.7%.


Assuntos
Gasolina , Poliuretanos , Adsorção , Humanos , Tiofenos
12.
Front Cell Neurosci ; 16: 979652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619675

RESUMO

Approximately 30% of the veterans who fought in the 1991 Gulf War (GW) suffer from a disease called Gulf War Illness (GWI), which encompasses a constellation of symptoms including cognitive deficits. A coalescence of evidence indicates that GWI was caused by low-level exposure to organophosphate pesticides and nerve agents in combination with physical stressors of the battlefield. Until recently, progress on mechanisms and therapy had been limited to rodent-based models. Using peripheral blood mononuclear cells from veterans with or without GWI, we recently developed a bank of human induced pluripotent stem cells that can be differentiated into a variety of cellular fates. With these cells, we have now generated cerebral organoids, which are three-dimensional multicellular structures that resemble the human brain. We established organoid cultures from two GW veterans, one with GWI and one without. Immunohistochemical analyses indicate that these organoids, when treated with a GW toxicant regimen consisting of the organophosphate diisopropyl fluorophosphate (a sarin analog) and cortisol (to mimic battlefield stress), display multiple indicators consistent with cognitive deficits, including increased astrocytic reactivity, enhanced phosphorylation of tau proteins, decreased microtubule stability, and impaired neurogenesis. Interestingly, some of these phenotypes were more pronounced in the organoids derived from the veteran with GWI, potentially reflecting a stronger response to the toxicants in some individuals compared to others. These results suggest that veteran-derived human cerebral organoids not only can be used as an innovative human model to uncover the cellular responses to GW toxicants but can also serve as a platform for developing personalized medicine approaches for the veterans.

13.
Hum Mol Genet ; 31(11): 1844-1859, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935948

RESUMO

Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.


Assuntos
Paraplegia Espástica Hereditária , Espastina , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Mutação com Ganho de Função , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Espastina/genética
14.
Cell Mol Life Sci ; 78(21-22): 6941-6961, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34580742

RESUMO

Gulf War Illness (GWI), a disorder suffered by approximately 200,000 veterans of the first Gulf War, was caused by exposure to low-level organophosphate pesticides and nerve agents in combination with battlefield stress. To elucidate the mechanistic basis of the brain-related symptoms of GWI, human-induced pluripotent stem cells (hiPSCs) derived from veterans with or without GWI were differentiated into forebrain glutamatergic neurons and then exposed to a Gulf War (GW) relevant toxicant regimen consisting of a sarin analog and cortisol, a human stress hormone. Elevated levels of total and phosphorylated tau, reduced microtubule acetylation, altered mitochondrial dynamics/transport, and decreased neuronal activity were observed in neurons exposed to the toxicant regimen. Some of the data are consistent with the possibility that some veterans may have been predisposed to acquire GWI. Wistar rats exposed to a similar toxicant regimen showed a mild learning and memory deficit, as well as cell loss and tau pathology selectively in the CA3 region of the hippocampus. These cellular responses offer a mechanistic explanation for the memory loss suffered by veterans with GWI and provide a cell-based model for screening drugs and developing personalized therapies for these veterans.


Assuntos
Síndrome do Golfo Pérsico/patologia , Animais , Região CA3 Hipocampal/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Guerra do Golfo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Transtornos da Memória/patologia , Neurônios/patologia , Ratos , Ratos Wistar , Veteranos
15.
Brain Sci ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439700

RESUMO

Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.

16.
Methods Mol Biol ; 2311: 73-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34033079

RESUMO

Neural stem cells (NSCs) are a valuable tool for the study of neural development and function as well as an important source of cell transplantation strategies for neural disease. NSCs can be used to study how neurons acquire distinct phenotypes and how the interactions between neurons and glial cells in the developing nervous system shape the structure and function of the CNS. NSCs can also be used for cell replacement therapies following CNS injury targeting astrocytes, oligodendrocytes, and neurons. With the availability of patient-derived induced pluripotent stem cells (iPSCs), neurons prepared from NSCs can be used to elucidate the molecular basis of neurological disorders leading to potential treatments. Although NSCs can be derived from different species and many sources, including embryonic stem cells (ESCs), iPSCs, adult CNS, and direct reprogramming of nonneural cells, isolating primary NSCs directly from fetal tissue is still the most common technique for preparation and study of neurons. Regardless of the source of tissue, similar techniques are used to maintain NSCs in culture and to differentiate NSCs toward mature neural lineages. This chapter will describe specific methods for isolating and characterizing multipotent NSCs and neural precursor cells (NPCs) from embryonic rat CNS tissue (mostly spinal cord) and from human ESCs and iPSCs as well as NPCs prepared by reprogramming. NPCs can be separated into neuronal and glial restricted progenitors (NRP and GRP, respectively) and used to reliably produce neurons or glial cells both in vitro and following transplantation into the adult CNS. This chapter will describe in detail the methods required for the isolation, propagation, storage, and differentiation of NSCs and NPCs isolated from rat and mouse spinal cords for subsequent in vitro or in vivo studies as well as new methods associated with ESCs, iPSCs, and reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Neurogênese , Neurônios/transplante , Medula Espinal/embriologia , Animais , Técnicas de Cultura de Células , Linhagem da Célula , Proliferação de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Fenótipo , Gravidez , Ratos
17.
Cytoskeleton (Hoboken) ; 76(4): 289-297, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31108029

RESUMO

Mutations of the SPAST gene are the chief cause of hereditary spastic paraplegia. Controversy exists in the medical community as to whether the etiology of the disease is haploinsufficiency or toxic gain-of-function properties of the mutant spastin proteins. In recognition of strong reasons that support each possible mechanism, here we present a novel perspective, based in part on new studies with mouse models and in part on the largest study to date on patients with the disease. We posit that haploinsufficiency does not cause the disease but makes the corticospinal tracts vulnerable to a second hit, which is usually the mutant spastin proteins but could also be proteins generated by mutations of other genes that may or may not cause the disease on their own.


Assuntos
Paraplegia Espástica Hereditária/etiologia , Feminino , Humanos , Masculino
18.
Trends Cell Biol ; 29(6): 452-461, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30929793

RESUMO

Tau is a multifunctional microtubule-associated protein in the neuron. For decades, tau's main function in neurons has been broadly accepted as stabilizing microtubules in the axon; however, this conclusion was reached mainly on the basis of studies performed in vitro and on ectopic expression of tau in non-neuronal cells. The idea has become so prevailing that some disease researchers are even seeking to use microtubule-stabilizing drugs to treat diseases in which tau dissociates from microtubules. Recent work suggests that tau is not a stabilizer of microtubules in the axon, but rather enables axonal microtubules to have long labile domains, in part by outcompeting genuine stabilizers. This new perspective on tau challenges long-standing dogma.


Assuntos
Proteínas tau/metabolismo , Animais , Humanos , Microtúbulos/metabolismo , Neurônios/metabolismo
19.
Traffic ; 20(1): 71-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411440

RESUMO

KIF15, the vertebrate kinesin-12, is best known as a mitotic motor protein, but continues to be expressed in neurons. Like KIF11 (the vertebrate kinesin-5), KIF15 interacts with microtubules in the axon to limit their sliding relative to one another. Unlike KIF11, KIF15 also regulates interactions between microtubules and actin filaments at sites of axonal branch formation and in growth cones. Our original work on these motors was done on cultured rat neurons, but we are now using zebrafish to extend these studies to an in vivo model. We previously studied kif15 in zebrafish by injecting splice-blocking morpholinos injected into embryos. Consistent with the cell culture work, these studies demonstrated that axons grow faster and longer when KIF15 levels are reduced. In the present study, we applied CRISPR/Cas9-based knockout technology to create kif15 mutants and labeled neurons with Tg(mnx1:GFP) transgene or transient expression of elavl3:EGFP-alpha tubulin. We then compared by live imaging the homozygotic, heterozygotic mutants to their wildtype siblings to ascertain the effects of depletion of kif15 during Caudal primary motor neuron and Rohon-Beard (R-B) sensory neuron development. The results showed, compared to the kif15 wildtype, the number of branches was reduced while axon outgrowth was accelerated in kif15 homozygotic and heterozygotic mutants. In R-B sensory neurons, after laser irradiation, injured axons with loss of kif15 displayed significantly greater regenerative velocity. Given these results and the fact that kif15 drugs are currently under development, we posit kif15 as a novel target for therapeutically augmenting regeneration of injured axons.


Assuntos
Cinesinas/genética , Mutação , Regeneração Nervosa , Crescimento Neuronal , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Peixe-Zebra
20.
Hum Mol Genet ; 28(7): 1136-1152, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520996

RESUMO

Mutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation. Expression of the mutant spastin was documented from fetus to adult, but gait defects reminiscent of HSP (not observed in spastin knockout mice) were adult onset, as is typical of human patients. Results of histological and tracer studies on the mouse are consistent with progressive dying back of corticospinal axons, which is characteristic of the disease. The C448Y-mutated spastin alters microtubule stability in a manner that is opposite to the expectations of haploinsufficiency. Neurons cultured from the mouse display deficits in organelle transport typical of axonal degenerative diseases, and these deficits were worsened by depletion of endogenous mouse spastin. These results on the SPASTC448Y mouse are consistent with a gain-of-function mechanism underlying HSP, with spastin haploinsufficiency exacerbating the toxicity of the mutant spastin proteins. These findings reveal the need for a different therapeutic approach than indicated by haploinsufficiency alone.


Assuntos
Paraplegia Espástica Hereditária/genética , Espastina/genética , Animais , Transporte Axonal/fisiologia , Axônios/metabolismo , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Haploinsuficiência , Haplótipos , Camundongos , Camundongos Transgênicos , Microtúbulos/metabolismo , Proteínas Mutantes/genética , Mutação , Neurônios/metabolismo , Paraplegia Espástica Hereditária/fisiopatologia , Espastina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA