RESUMO
This study assessed the effect of konjac glucomannan (KGM) on the aggregation of soy protein isolate (SPI) and its gel-related structure and properties. Raman results showed that KGM promoted the rearrangement of SPI to form more ß-sheets, contributing to the formation of an ordered structure. Atomic force microscopy, confocal laser scanning microscopy, and small-angle X-ray scattering results indicated that KGM reduced the size of SPI particles, narrowed their size distribution, and loosened the large aggregates formed by the stacking of SPI particles, improving the uniformity of gel system. As the hydrogen bonding between the KGM and SPI molecules enhanced, a well-developed network structure was obtained, further reducing the immobilized water's content (T22) and increasing the water-holding capacity (WHC) of SPI gel. Furthermore, this gel structure showed improved gel hardness and resistance to both small and large deformations. These findings facilitate the design and production of SPI-based gels with desired performance.
Assuntos
Géis , Mananas , Proteínas de Soja , Proteínas de Soja/química , Mananas/química , Géis/química , Tamanho da Partícula , Agregados ProteicosRESUMO
The development of biomass-based eco-friendly aerogel with superior flame retardancy, thermal insulation, and mechanical properties at the same time has long been a tough challenge. In this study, the polysaccharide-based aerogels composed of konjac glucomannan, sodium alginate, and supramolecular assembled melamine phytate (MPA) nanosheets were successfully fabricated through the freeze-drying method. Owing to the excellent charcoal-forming and non-combustible gas-releasing effect of MPA nanosheets, the thermal stability and flame retardancy properties of the aerogels were both significantly enhanced, with the highest limiting oxygen index value reaching 42.4â¯%. Meanwhile, appropriate MPA embedded in the pore walls greatly enhanced the compressive strength of the aerogel (364.9â¯kPa) and can withstand >7100 times its weight without visual deformation. Moreover, the thermal insulation effect was quite attractive with a thermal conductivity of 0.0385-0.0420â¯W/mK. The present work provided an environmentally friendly method for the fabrication of multifunctional sustainable fire-resistant aerogels, which showed promising prospects in the future.
RESUMO
Increasing requests for thickened fluid food are demanded with population aging, while the limited information provided by the International Dysphagia Diet Standardisation Initiative (IDDSI) is insufficient for food development. Recently, the introduction of computer simulation seems to be able to overcome this dilemma. Here, a thickened fluid system (xanthan gum and konjac glucomannan, XG and KGM) at different ratios was kept at the same IDDSI level 3. An obvious synergy was observed in the ratio of 1:9 (XG: KGM) with high surface tension, zero-shear viscosity, firmness and cohesion, and thus was used to prepare the brown rice paste. From computer simulation, the brown rice pastes (0.3 % and 0.5 % thickener) splashed and that with higher thickener content resulted in more residue. The thickener content of 0.7 % provided enough viscosity and cohesion to avoid splash, and most of the bolus flowed consistently, showing the best sensory quality and swallowing properties.
RESUMO
Polysaccharides have emerged as versatile materials capable of forming gels through diverse induction methods, with alcohol-induced polysaccharide gels demonstrating significant potential across food, medicinal, and other domains. The existing research mainly focused on the phenomena and mechanisms of alcohol-induced gel formation in specific polysaccharides. Therefore, this review provides a comprehensive overview of the intricate mechanisms underpinning alcohol-triggered gelation of different polysaccharides and surveys their prominent application potentials through rheological, mechanical, and other characterizations. The mechanism underlying the enhancement of polysaccharide network structures by alcohol is elucidated, where alcohol displaces water to establish hydrogen bonding and hydrophobic interactions with polysaccharide chains. Specifically, alcohols change the arrangement of water molecules, and the partial hydration shell surrounding polysaccharide molecules is disrupted, exposing polysaccharides' hydrophobic groups and enhancing hydrophobic interactions. Moreover, the pivotal influences of alcohol concentration and addition method on polysaccharide gelation kinetics are scrutinized, revealing nuanced dependencies such as the different gel-promoting capabilities of polyols versus monohydric alcohols and the critical threshold concentrations dictating gel formation. Notably, immersion of polysaccharide gels in alcohol augments gel strength, while direct alcohol addition to polysaccharide solutions precipitates gel formation. Future investigations are urged to unravel the intricate nexus between the mechanisms underpinning alcohol-induced polysaccharide gelation and their practical utility, thereby paving the path for tailored manipulation of environmental conditions to engineer bespoke alcohol-induced polysaccharide gels.
RESUMO
Brown rice (BR), one of the popular whole grains worldwide, is still limited to consumption due to its rough texture after cooking. Through inspecting structural alteration, this work discloses how heat-moisture treatment (HMT) moisture content (15 %-25 %) and time (1.0 h-3.0 h) modify the starch digestibility and cooked BR texture. The medium moisture content (20 %) allowed the highest pasting viscosity and a uniform network structure of cooked BR. Prolonging the HMT time from 1.0 h to 2.0 h at medium moisture content hindered starch swelling and improved stability. Meanwhile, the relative crystallinity, the surface compactness in nanoscale and R995/1022 decreased, while the gel network structure was improved, contributing to the softened cooked BR texture and the enhanced starch digestibility. Although the resistant starch content raised to 13.55 % after 3.0 h of HMT, the springiness, gumminess and chewiness of cooked BR degraded, and this should be considered in certain conditions.
Assuntos
Culinária , Temperatura Alta , Oryza , Amido , Água , Oryza/química , Amido/química , Água/química , ViscosidadeRESUMO
In practical scenarios, destabilizing the physical attributes of natural polymers such as gelatin and starch occurs readily when exposed to specific moisture levels and heat. In this context, this work was carried out to assess the impact of PVA addition (up to 13 wt%) on the structure and physical properties of a 6:4 (w/w) gelatin/starch blend. The inclusion of PVA unfolded the molecular chains of gelatin and starch, thereby disrupting gelatin α-helices and impeding biopolymer crystallization. This facilitated hydrogen-bonding interaction between PVA and the two biopolymers, enhancing the stability of the molecular network structure. Rheological results indicate that composites (added with 4 % or 7 % PVA) with good compatibility exhibited excellent mechanical properties and deformation resistance. The addition of PVA elevated the gelling temperature (Tgel) of the composites from 41.31 °C to 80.33 °C; the tensile strength and elongation at break were increased from 2.89 MPa to 3.40 MPa and 341.62 % to 367.56 %, respectively; and the thermal stability was also apparently improved, signifying the effective enhancement of the physical properties of gelatin/starch-based composites and the broadening of their application scope. This work could provide insights into the development of biodegradable natural/synthetic polymer composites with application-beneficial characteristics.
RESUMO
The synergistic interaction gels (SIGs) can be created by blending konjac glucomannan (KGM) and κ-carrageenan, and have been applied to modify and improve the rheological and texture properties of food system. However, the assembly behaviors between them are still unclear. This work revealed that the presence of KGM promoted phase transition of nearby κ-carrageenan molecules probably by contributing to entropy increment. Subsequently, the rest of κ-carrageenan transformed into helical structure, assembled into a series of laterally arranged trigonal units and formed a three-dimensional network. In KGM/κ-carrageenan SIGs, the size of high density domains (Ξ) in aggregates and the distance of these high density domains (ξ) were narrowed firstly and then enlarged as increasing of KGM content. These nano-scale structure features were responsible for the relative higher gel strength for KGM/κ-carrageenan SIGs with proportion ratios of 1:9 (K1C9) and 3:7 (K3C7). This study serves to facilitate the design and production of SIGs with the requisite performance characteristics.
Assuntos
Carragenina , Géis , Mananas , Reologia , Carragenina/química , Mananas/química , Géis/químicaRESUMO
Understanding the interplay among salt ions, anthocyanin and starch within food matrices under thermal conditions is important for the development of starch-based foods with demanded quality attributes. However, how salt ions presence influences the microstructure and properties of starch/anthocyanin binary system remains largely unclear. Herein, indica rice starch (IRS) and rice anthocyanin (RA) were used to construct an IRS-RA binary system, with thermal treatment under different concentrations of Na+ (10-40 mM) and types of salt ions (Na+ and Ca2+). The incorporation of salt ions induced the formation of a porous gel matrix, and destroyed the hydrogen bond between starch and anthocyanin through electrostatic interactions, reducing the storage modulus and radius of gyration of the binary system, and increasing the relative crystallinity (from 1.08 % to 1.51 % (20 mM Na+) and 1.69 % (20 mM Ca+)) of the IRS-RA binary system at 90 °C. Also, the DPPH radical scavenging ability of the binary system at 90 °C was enhanced upon incorporating salt ions (0.93 for Na+ condition and 0.94 for Ca2+ condition at 20 mM ion concentration). It is noteworthy that Ca2+ inclusion had more significant effects than the case for Na+ presence, presumably due to the increased charge density.
Assuntos
Antocianinas , Íons , Oryza , Amido , Amido/química , Oryza/química , Antocianinas/química , Íons/química , Sódio/química , Temperatura , Cálcio/químicaRESUMO
Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.
Assuntos
Oryza , Antocianinas , Albuminas , Cloreto de Sódio , Cloreto de Sódio na Dieta , Grão Comestível , ÍonsRESUMO
The sol performance of wheat starch (WS) matrix incorporating acetylated starch (AS) is crucial for the processing and quality features of wheat products. From a supramolecular structure view, how regulating salt (sodium chloride) concentration modulates the sol features, e.g., pasting, zero-shear viscosity (ZSV) and thixotropy of WS-AS binary matrix was explored. Compared to the salt-free counterpart, the saline matrices exhibited a delayed pasting profile and a decreased viscoelasticity. Thereinto, the sol at 0.02 M NaCl exhibited the smallest ZSV (23,710 Pa·s) and the greatest in-shear recovery ratio (33.7 %). Such variations could be attributed to the weakened coil-helix, nematic-smectic and isotropy-anisotropy transitions from a side-chain liquid-crystalline perspective. Meanwhile, the correlation length (ξ) and radius of gyration (Rg) obtained from small angle X-ray scattering analysis were increased by 5.2 and 9.6 Å respectively, which disclosed a restrained entanglement and an enhanced chain mobility. These results would provide a reference for the design of fluid/semisolid products with optimized qualities.
RESUMO
The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide-dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide-dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.
RESUMO
While brown rice (BR) has numerous nutritional properties, the consumption potential of which is seriously restricted since the poor cooking quality and undesirable flavor. Here, edible oils (pork lard and corn oil, 1-5 wt%) were incorporated during the cooking of BR following heat moisture treatment. Incorporating corn oil rather than lard significantly ameliorated the texture properties (e.g. hardness, cohesiveness, and chewiness) and sensory properties of cooked BR. Both lard- and corn oil-incorporated cooked BR showed obvious structural changes accompanied by the formation of amylose-lipid complexes during cooking. It was confirmed that the incorporation of lard and corn oil allowed a higher degree of short-range molecular order, more V-type starch crystallites, and elevated nano-structural arrangements. Additionally, a decreased hardness (from 559.04 g to 424.18 g and 385.91 g, respectively) and enriched resistant starch (RS) were also observed, the highest RS content (15.95 % and 16.32 %, respectively) was observed when 1 wt% of lard and corn oil were incorporated.
Assuntos
Oryza , Oryza/química , Óleo de Milho , Temperatura Alta , Culinária , Amido/químicaRESUMO
Ionic strength condition is a crucial parameter for food processing, but it remains unclear how ionic strength alters the structure and digestibility of binary complexes containing starch and protein/protein hydrolysates. Here, the binary complex with varied ionic strength (0-0.40 M) was built by native corn starch (NS) and soy protein isolate (SPI)/hydrolysates (SPIH) through NaCl. The inclusion of SPI and SPIH allowed a compact network structure, especially the SPIH with reduced molecule size, which enriched the resistant starch (RS) of NS-SPIH. Particularly, the higher ionic strength caused the larger nonperiodic structures and induced loosener network structures, largely increasing the possibility of amylase for starch digestion and resulting in a decreased RS content from 19.07 % to 15.52 %. In other words, the SPIH hindered starch digestion while increasing ionic strength had the opposite effect, which should be considered in staple food production.
Assuntos
Amido Resistente , Amido , Amido/química , Amido Resistente/farmacologia , Hidrolisados de Proteína/farmacologia , Amilases , Concentração Osmolar , DigestãoRESUMO
Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.
Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Biopolímeros , Polímeros/química , Polissacarídeos , Gelatina/químicaRESUMO
Staple foods with starch and protein components are usually consumed after thermal processing. To date, how including protein hydrolysates (with varied hydrolysis degrees) tailors the structure and digestion features of starch-based matrix with thermal processing has not yet been sufficiently understood. Here, corn starch (CS), soy protein isolate (SPI), and soy protein isolate hydrolysates (SPIH) with different hydrolysis time (5-60 min) were used to prepare starch-based binary matrices. With the addition of SPI or SPIH during thermal processing, the resultant binary systems exhibited higher thermal stability (breakdown visibility was increased by 1.9-10.8 times), denser networks, and fewer short-range orders (R995/1022 was decreased by up to 15.3 %). These structural changes allowed an inhibited starch digestion within the binary system, especially with increased SPI or SPIH content. Compared with CS, the content of resistant starch (RS) for CS-SPI binary complex (10:3 w/w) increased from 9.89 % to 16.69 %. Compared to SPI, SPIH inclusion displayed a stronger inhibitory effect on starch digestion since the reduced molecule size of SPIH probably enhanced its interplays with starch or amylase. For instance, the 10:3 w/w starch-SPIH 60 binary matrix possessed the highest RS content (19.07 %).
Assuntos
Hidrolisados de Proteína , Amido , Amido/química , Hidrolisados de Proteína/química , Proteínas de Soja/química , Hidrólise , DigestãoRESUMO
Controlling the digestion features of starch-based food matrices following thermal processing plays vital roles in reducing risks of metabolic diseases such as obesity and type II diabetes. To date, it remains largely unclear how regulating the pH during thermal processing alters the microstructure and digestion features of starch-based matrix including protein hydrolysates. Considering this, corn starch (CS) and soybean protein isolate (SPI) (or its hydrolysates (SPIH)) were used to prepare thermally-processed CS-SPI and CS-SPIH binary matrices under different pH values (3 to 9), followed by inspection of changes in the structures and digestibility using combined methods. It was found that including SPI (especially SPIH) caused structural changes of those binary systems, such as reduced network sizes, increased V-crystals and reduced nanoscale structures, which could allow more resistant starch (RS). This phenomenon was especially true when including SPIH with regulated pH value. For instance, SPIH inclusion at pH 5 caused the highest RS content (about 20.30%), presumably linked to the reduced molecule size of SPIH with strengthened aggregation at pH 5. In contrast, the acidic (pH 3) and alkaline (pH 9) conditions allowed reduced short-range orders and tailored porous networks and thus less RS (ca. 17.46% at pH 3 and 16.74% at pH 9).
Assuntos
Diabetes Mellitus Tipo 2 , Amido , Humanos , Amido/química , Hidrolisados de Proteína/química , Amido Resistente , Proteínas de Soja/química , Concentração de Íons de HidrogênioRESUMO
Kudzu is usually consumed at different growth years, yet the influences of growth years on its multi-scale structures and physicochemical features have not been fully disclosed. In this study, those influences occurred on kudzu starches (KS2, KS10, KS30 and KS50, isolated using precipitation method) were investigated. The granules size, crystallinity, short-range ordered structure, amylose content, intermediate and longer amylose chains reduced but the average thickness of crystalline lamella increased as the rise of growth years. KS2 had lower content of defective crystal structure and higher content of near-perfect crystal structure. Those signified that bulk density of molecules packing into starch substrate was higher for KS2, which was not beneficial for water molecules and enzymes entering into starch granules and thus elevated pasting temperature and reduced digestion rate. Besides, reduced proportions of defective ordered structures and enhanced lipid-amylose complex also reduced digestion rate. Both the peak and breakdown viscosity were in order of KS2 > KS10 > KS30 ≈ KS50. And KS2, KS10, and KS30 exhibited enhanced retrogradation tendency during cooling than KS50 as evidenced by the relative higher setback viscosity. Those results are favor for rational screen and usage of kudzu starch resources with different growth years for food applications.
RESUMO
High-fat diet is a risk factor for many chronic diseases, whose symptoms are probably regulated by ingesting food ingredients such as resistant starch. For cooked rice stored in cold-chain, the starch component can retrograde to generate ordered structures (helices and crystallites) and become resistant. However, the role of retrograded starch in managing hyperlipidemia symptoms is insufficiently understood. Here, compared to the normal high-fat diet, ingesting retrograded starch reduced the triglyceride and low-density lipoprotein cholesterol levels of high-fat diet mice by 17.69% and 41.33%, respectively. This relieved hyperlipidemia could be linked to the changes in intestinal bacteria. Retrograded starch intervention increased the relative abundance of Bacteroides (2.30 times higher), which produces propionic acid (increased by 8.26%). Meanwhile, Bacteroides were positively correlated with butyric acid (increased by 98.4%) with strong anti-inflammatory functions. Hence, retrograded starch intervention may regulate the body's health by altering intestinal bacteria.
Assuntos
Hiperlipidemias , Oryza , Camundongos , Animais , Amido/química , Dieta Hiperlipídica/efeitos adversos , Oryza/química , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Ácido Butírico , Bactérias/genéticaRESUMO
For the development of innovative foods and nutritional fortification, research into food gel is essential. As two types of rich natural gel material, both legume proteins and polysaccharides have high nutritional value and excellent application potential, attracting wide attention worldwide. Research has focused on combining legume proteins with polysaccharides to form hybrid hydrogels as their combinations show improved texture and water retention compared to single legume protein or single polysaccharide gels, and these properties can be tailored for specific applications. This article reviews hydrogels of common legume proteins and discusses heat induction, pH induction, salt ion induction, and enzyme-induced assembly of legume protein/polysaccharide mixtures. The applications of these hydrogels in fat replacement, satiety enhancement, and delivery of bioactive ingredients are discussed. Challenges for future work are also highlighted.
Assuntos
Fabaceae , Hidrogéis , Hidrogéis/química , Polissacarídeos/química , Proteínas/química , VerdurasRESUMO
Nowadays, resulting from disordered glucose and lipid metabolism, metabolic diseases (e.g., hyperglycemia, type 2 diabetes, and obesity) are among the most serious health issues facing humans worldwide. Increasing evidence has confirmed that dietary intervention (with healthy foods) is effective at regulating the metabolic syndrome. Whole grain rice (WGR) rich in dietary fiber and many bioactive compounds (e.g., γ-amino butyric acid, γ-oryzanol, and polyphenols) can not only inhibit starch digestion and prevent rapid increase in the blood glucose level, but also reduce oxidative stress and damage to the liver, thereby regulating glucose and lipid metabolism. The rate of starch digestion is directly related to the blood glucose level in the organism after WGR intake. Therefore, the effects of different factors (e.g., additives, cooking, germination, and physical treatments) on WGR starch digestibility are examined in this review. In addition, the mechanisms from human and animal experiments regarding the correlation between the intake of WGR or its products and the lowered blood glucose and lipid levels and the reduced incidence of diabetes and obesity are discussed. Moreover, information on developing WGR products with the health benefits is provided.