Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Comput Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38758925

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology provides a means for studying biology from a cellular perspective. The fundamental goal of scRNA-seq data analysis is to discriminate single-cell types using unsupervised clustering. Few single-cell clustering algorithms have taken into account both deep and surface information, despite the recent slew of suggestions. Consequently, this article constructs a fusion learning framework based on deep learning, namely scGASI. For learning a clustering similarity matrix, scGASI integrates data affinity recovery and deep feature embedding in a unified scheme based on various top feature sets. Next, scGASI learns the low-dimensional latent representation underlying the data using a graph autoencoder to mine the hidden information residing in the data. To efficiently merge the surface information from raw area and the deeper potential information from underlying area, we then construct a fusion learning model based on self-expression. scGASI uses this fusion learning model to learn the similarity matrix of an individual feature set as well as the clustering similarity matrix of all feature sets. Lastly, gene marker identification, visualization, and clustering are accomplished using the clustering similarity matrix. Extensive verification on actual data sets demonstrates that scGASI outperforms many widely used clustering techniques in terms of clustering accuracy.

2.
Front Nutr ; 11: 1322225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774260

RESUMO

Background: Currently, no food frequency questionnaire is available to be administered exclusively to ethnic minorities in China. This study aimed to evaluate the reproducibility and validity of a culturally tailored semi-quantitative food frequency questionnaire (FFQ) designed for pregnant women belonging to the Miao ethnic group in China. Methods: A total of 74 questions in the FFQ were administered to collect dietary information from Miao women in China during their pregnancy. This study included 153 and 127 pregnant women, respectively, for testing the validity and reproducibility of the results. Baseline FFQ data (FFQ1) were collected initially, followed by the administration of a repeated FFQ 4-6 weeks later (FFQ2). Two 24-h recalls (24HR) were used as references to compare food groups and nutrient intake. Pearson/Spearman's coefficients were used to measure the validity and reproducibility of the FFQ. Quartile cross-classification, weighted kappa coefficients, and Bland-Altman plots were employed to assess the agreement. Results: Most food groups and nutrient intake estimated by the FFQ were higher than those estimated by the 24HR. Food groups and nutrients' correlations for FFQ vs. 24HR after being energy-adjusted and de-attenuated, respectively, were 0.10 (vegetables) to 0.45 (grains/tubers) and 0.15 (iron) to 0.52 (riboflavin). Comparatively, correlation coefficients for FFQ1 vs. FFQ2 ranged from 0.41 (fruit) to 0.71 (vegetables) and from 0.45 (energy) to 0.64 (calcium). The percentage of pregnant women classified in the same or adjacent quartiles ranged from 64.08% (vegetables) to 95.29% (sour soup) and from 68.88% (vitamin E) to 78.81% (energy). Weighted kappa coefficients exceeded 0.2 for food groups and most nutrients, and Bland-Altman plots demonstrated acceptable agreement between the two tools. Conclusions: This study provides novel information on the validation of FFQ. It demonstrates that the FFQ exhibits ideal reproducibility and acceptable validity in estimating and ranking the intake of food groups and most nutrients among pregnant women belonging to the Chinese Miao ethnic group.

3.
J Environ Manage ; 358: 120946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652991

RESUMO

Wilderness areas are natural landscape elements that are relatively undisrupted by human activity and play a critical role in maintaining ecological equilibrium, preserving naturalness, and ensuring ecosystem resilience. Since 2000, monitoring of global wilderness areas has increased owing to the availability of spatial map data and remote sensing imagery related to human activity and/or human footprint. Progress has been made in the remote sensing of wilderness areas by relying on available historical literature (e.g., published papers, books, and reports). However, to our knowledge, a synthesis of wilderness area research from a remote sensing perspective has not yet been performed. In this preliminary review, we discuss the concept of wilderness in different historical eras and systematically summarize dynamic wilderness monitoring at local, national, and global scales, available remotely sensed indicators, disparities and commonalities in identification methods, and mapping uncertainties. Finally, since this field remains in its initial stage owing to a lack of unified standards and vertical/horizontal comparisons, we present insights into future research directions, particularly with regard to remote sensing. The findings of this review may help to improve the overall understanding of current wilderness patterns (i.e., increases/decreases) and the mechanisms by which they change, as well as provide guidance for global nature conservation programs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Selvagem , Tecnologia de Sensoriamento Remoto , Humanos , Monitoramento Ambiental/métodos
4.
Natl Sci Rev ; 11(2): nwad324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314400

RESUMO

Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.

5.
Brain Behav ; 14(2): e3399, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340139

RESUMO

OBJECTIVE: To explore the impact of inflammatory factors on the incidence of cerebral small vessel disease (CSVD), we performed a mendelian randomization (MR) study to analyze the causal relationship between multiple inflammatory factors and CSVD imaging markers and utilized summary-data-based mendelian randomization (SMR) analysis to infer whether the impact of instrumental variables (IVs) on disease is mediated by gene expression or DNA methylation. METHODS: Using public databases such as UKB and IEU, and original genome-wide association studies, we obtained IVs related to exposure (inflammatory factors) and outcome (CSVD imaging markers). We performed the inverse variance weighted, weighted median, and MR-Egger methods to assess causal effects between exposure and outcome in univariate MR analysis. To evaluate their heterogeneity, a series of sensitivity analyses were conducted, including the Cochrane Q test, MR-Egger intercept test, MR-Presso, and leave-one-out analysis. We also applied mediation and multivariate MR analysis to explore the interactions between positive exposures on the same outcome. Additionally, we conducted the SMR, which utilizes instruments within or near relevant genes in blood or brain tissues, to elucidate the causal associations with CSVD markers. RESULTS: ABO Univariate MR of multiple cohorts revealed that the risk of small vessel stroke (SVS) increases with elevated levels of TNF-related apoptosis-inducing ligand (TRAIL, OR, 1.23, 95% CI, 1.08-1.39) and interleukin-1 receptor-like 2, (IL-1RL2, OR, 1.29, 95% CI, 1.04-1.61). IL-18 was a potential risk factor for extensive basal ganglia perivascular space burden (BGPVS, OR, 1.02, 95% CI, 1.00-1.05). Moreover, the risk of extensive white matter perivascular space burden (WMPVS) decreased with rising levels of E-selectin (OR, .98, 95% CI, .97-1.00), IL-1RL2 (OR, .97, 95% CI, .95-1.00), IL-3 receptor subunit alpha (IL-3Ra, OR, .98, 95% CI, .97-1.00), and IL-5 receptor subunit alpha (IL-5Ra, OR, .98, 95% CI, .97-1.00). Mediation and multivariate MR analysis indicated that E-selectin and IL-3Ra might interact during the pathogenesis of WMPVS. SMR estimates showed that TRAIL-related IVs rs5030044 and rs2304456 increased the risk of SVS by increasing the expression of gene Kininogen-1 (KNG1) in the cerebral cortex, particularly in the frontal cortex (ßsmr = .10, Psmr = .003, FDR = .04). Instruments (rs507666 and rs2519093) related to E-selectin and IL-3Ra could increase the risk of WMPVS by enhancing DNA methylation of the gene ABO in blood tissue (ßsmr = .01-.02, Psmr = .001, FDR = .01-.03). CONCLUSION: According to MR and SMR analysis, higher levels of TRAIL increased the risk of SVS by upregulating gene expression of KNG1 in brain cortex tissues. In addition, protective effects of E-selectin and IL-3a levels on WMPVS were regulated by increased DNA methylation of gene ABO in blood tissue.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Selectina E , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fatores de Risco , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética
6.
Nano Lett ; 24(8): 2611-2618, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357869

RESUMO

Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.

8.
Theriogenology ; 212: 129-139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717516

RESUMO

Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.


Assuntos
Células Germinativas , Células-Tronco , Suínos , Animais , Diferenciação Celular/fisiologia , Células Germinativas/metabolismo , Gametogênese , Células Cultivadas
9.
Cerebrovasc Dis ; : 1-10, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37729882

RESUMO

INTRODUCTION: Stroke is closely related to cognitive function, and many patients experience cognitive impairment after stroke; however, whether cognitive impairment is associated with an increased risk of stroke remains inconclusive. This study aims to investigate whether cognitive impairment is associated with new-onset stroke (first ever nonfatal stroke) using a national prospective study. METHODS: Data from the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2018 were used. A total of 11,961 Chinese participants aged ≥45 years without a history of stroke were included in the present study and divided into a cognitive impairment group and a normal group according to the baseline cognitive score. Logistic regression analysis was used to analyse the association between baseline cognitive function and new-onset stroke. RESULTS: During the 6.96-year follow-up period, 875 participants experienced new-onset stroke. Compared with the cognitively normal group, the odds ratio (95% confidence intervals) for new-onset stroke in the cognitively impaired group was 1.21 (1.04, 1.40) when not adjusted for confounders and 1.22 (1.01, 1.48) after adjusting for established confounding factors, including demographic data, medical history, physical examination, and laboratory indicators. CONCLUSION: Cognitive impairment was associated with new-onset stroke among middle-aged and elderly Chinese individuals. Further studies should be carried out to confirm the causal relationship between cognitive impairment and stroke.

10.
Front Endocrinol (Lausanne) ; 14: 1222635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484950

RESUMO

Introduction: In recent years, the quality of male semen has been decreasing, and the number of male infertilities caused by asthenozoospermia is increasing year by year, and the diagnosis and treatment of patients with asthenozoospermia are gradually receiving the attention of the whole society. Due to the unknown etiology and complex pathogenesis, there is no specific treatment for asthenozoospermia. Our previous study found that the administration of chestnut polysaccharide could alter the intestinal microbiota and thus improve the testicular microenvironment, and rescue the impaired spermatogenesis process by enhancing the expression of reproduction-related genes, but its exact metabolome-related repairment mechanism of chestnut polysaccharide is still unclear. Methods and results: In this study, we studied the blood metabolomic changes of busulfan-induced asthenozoospermia-model mice before and after oral administration of chestnut polysaccharide with the help of metabolome, and screened two key differential metabolites (hydrogen carbonate and palmitic acid) from the set of metabolomic changes; we then analyzed the correlation between several metabolites and between different metabolites and intestinal flora by correlation analysis, and found that palmitic acid in the blood serum of mice after oral administration of chestnut polysaccharide had different degrees of correlation with various metabolites, and palmitic acid level had a significant positive correlation with the abundance of Verrucomicrobia; finally, we verified the role of palmitic acid in rescuing the damaged spermatogenesis process by using asthenozoospermia-model mice, and screened the key target gene for palmitic acid to play the rescuing effect by integrating the analysis of multiple databases. Discussion: In conclusion, this study found that chestnut polysaccharide rescued the damaged spermatogenesis in asthenozoospermia-model mice by upregulating palmitic acid level, which will provide theoretical basis and technical support for the use of chestnut polysaccharide in the treatment of asthenozoospermia.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Astenozoospermia/induzido quimicamente , Astenozoospermia/tratamento farmacológico , Astenozoospermia/genética , Ácido Palmítico , Espermatogênese/genética , Testículo/metabolismo , Infertilidade Masculina/genética , Polissacarídeos/farmacologia
11.
Cell Mol Life Sci ; 80(8): 224, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480481

RESUMO

According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.


Assuntos
Azoospermia , Transcriptoma , Masculino , Humanos , Animais , Suínos , Azoospermia/metabolismo , Células Cultivadas , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas , Fibroblastos
12.
J Am Chem Soc ; 145(30): 16862-16871, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471618

RESUMO

Despite the versatility of semiconductor nanocrystals (NCs) in photoinduced chemical processes, the generation of stable radicals has been more challenging due to reverse charge transfer or charge recombination even in the presence of sacrificial charge acceptors. Here, we show that cesium lead halide (CsPbX3) NCs can selectively photogenerate either aminium or aminyl radicals from amines, taking advantage of the controllable imbalance of the electron and hole populations achieved by varying the solvent composition. Using dihalomethane as the solvent, irreversible removal of the electrons from CsPbX3 NCs enabled by the photoinduced halide exchange between the NCs and the dihalomethane resulted in efficient oxidative generation of the aminium radical. In the absence of dihalomethane in solvent, the availability of both electrons and holes resulted in the production of an aminyl radical via sequential hole transfer and reductive N-H bond dissociation. The negative charge of the halide ions on the NC's lattice surface appears to facilitate the aminyl radical production, competing favorably with the reversible charge transfer reverting to the reactant.

13.
Transl Stroke Res ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222915

RESUMO

Chronic cerebral hypoperfusion is an important pathological factor in many neurodegenerative diseases, such as cerebral small vessel disease (CSVD). One of the most used animal models for chronic cerebral hypoperfusion is the bilateral common carotid artery stenosis (BCAS) mouse. For the therapy of CSVD and other diseases, it will be beneficial to understand the pathological alterations of the BCAS mouse, particularly vascular pathological changes. A mouse model of BCAS was used, and 8 weeks later, cognitive function of the mice was examined by using novel object recognition test and eight-arm radial maze test. 11.7 T magnetic resonance imaging (MRI) and luxol fast blue staining were used to evaluate the injury of the corpus callosum (CC), anterior commissure (AC), internal capsule (IC), and optic tract (Opt) in the cerebral white matter of mice. Three-dimensional vascular images of the whole brain of mice were acquired using fluorescence micro-optical sectioning tomography (fMOST) with a high resolution of 0.32 × 0.32 × 1.00 µm3. Then, the damaged white matter regions were further extracted to analyze the vessel length density, volume fraction, tortuosity, and the number of vessels of different internal diameters. The mouse cerebral caudal rhinal vein was also extracted and analyzed for its branch number and divergent angle in this study. BCAS modeling for 8 weeks resulted in impaired spatial working memory, reduced brain white matter integrity, and myelin degradation in mice, and CC showed the most severe white matter damage. 3D revascularization of the whole mouse brain showed that the number of large vessels was reduced and the number of small vessels was increased in BCAS mice. Further analysis revealed that the vessel length density and volume fraction in the damaged white matter region of BCAS mice were significantly reduced, and the vascular lesions were most noticeable in the CC. At the same time, the number of small vessels in the above white matter regions was significantly reduced, while the number of microvessels was significantly increased in BCAS mice, and the vascular tortuosity was also significantly increased. In addition, the analysis of caudal rhinal vein extraction revealed that the number of branches and the average divergent angle in BCAS mice were significantly reduced. The BCAS modeling for 8 weeks will lead to vascular lesions in whole brain of mice, and the caudal nasal vein was also damaged, while BCAS mice mainly mitigated the damages by increasing microvessels. What is more, the vascular lesions in white matter of mouse brain can cause white matter damage and spatial working memory deficit. These results provide evidence for the vascular pathological alterations caused by chronic hypoperfusion.

14.
IEEE J Biomed Health Inform ; 27(5): 2575-2584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027680

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology can provide expression profile of single cells, which propels biological research into a new chapter. Clustering individual cells based on their transcriptome is a critical objective of scRNA-seq data analysis. However, the high-dimensional, sparse and noisy nature of scRNA-seq data pose a challenge to single-cell clustering. Therefore, it is urgent to develop a clustering method targeting scRNA-seq data characteristics. Due to its powerful subspace learning capability and robustness to noise, the subspace segmentation method based on low-rank representation (LRR) is broadly used in clustering researches and achieves satisfactory results. In view of this, we propose a personalized low-rank subspace clustering method, namely PLRLS, to learn more accurate subspace structures from both global and local perspectives. Specifically, we first introduce the local structure constraint to capture the local structure information of the data, while helping our method to obtain better inter-cluster separability and intra-cluster compactness. Then, in order to retain the important similarity information that is ignored by the LRR model, we utilize the fractional function to extract similarity information between cells, and introduce this information as the similarity constraint into the LRR framework. The fractional function is an efficient similarity measure designed for scRNA-seq data, which has theoretical and practical implications. In the end, based on the LRR matrix learned from PLRLS, we perform downstream analyses on real scRNA-seq datasets, including spectral clustering, visualization and marker gene identification. Comparative experiments show that the proposed method achieves superior clustering accuracy and robustness.


Assuntos
Algoritmos , Análise da Expressão Gênica de Célula Única , Humanos , Transcriptoma , Análise por Conglomerados , Análise de Dados , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
15.
Stem Cell Res Ther ; 14(1): 17, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737797

RESUMO

BACKGROUND: Many laboratories have described the in vitro isolation of multipotent cells with stem cell properties from the skin of various species termed skin-derived stem cells (SDSCs). However, the cellular origin of these cells and their capability to give rise, among various cell types, to male germ cells, remain largely unexplored. METHODS: SDSCs were isolated from newborn mice skin, and then differentiated into primordial germ cell-like cells (PGCLCs) in vitro. Single-cell RNA sequencing (scRNA-seq) was then applied to dissect the cellular origin of SDSCs using cells isolated from newborn mouse skin and SDSC colonies. Based on an optimized culture strategy, we successfully generated spermatogonial stem cell-like cells (SSCLCs) in vitro. RESULTS: Here, using scRNA-seq and analyzing the profile of 7543 single-cell transcriptomes from newborn mouse skin and SDSCs, we discovered that they mainly consist of multipotent papillary dermal fibroblast progenitors (pDFPs) residing in the dermal layer. Moreover, we found that epidermal growth factor (EGF) signaling is pivotal for the capability of these progenitors to proliferate and form large colonies in vitro. Finally, we optimized the protocol to efficiently generate PGCLCs from SDSCs. Furthermore, PGCLCs were induced into SSCLCs and these SSCLCs showed meiotic potential when cultured with testicular organoids. CONCLUSIONS: Our findings here identify pDFPs as SDSCs derived from newborn skin and show for the first time that such precursors can be induced to generate cells of the male germline.


Assuntos
Células Germinativas , Células-Tronco Hematopoéticas , Animais , Camundongos , Células Germinativas/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes , Células Cultivadas , Fibroblastos
16.
Cancer Res ; 83(3): 398-413, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480196

RESUMO

The drug-tolerant persister (DTP) state enables cancer cells to evade cytotoxic stress from anticancer therapy. However, the mechanisms governing DTP generation remain poorly understood. Here, we observed that lung adenocarcinoma (LUAD) cells and organoids entered a quiescent DTP state to survive MAPK inhibitor treatment. DTP cells following MAPK inhibition underwent a metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS). PTEN-induced kinase 1 (PINK1), a serine/threonine kinase that initiates mitophagy, was upregulated to maintain mitochondrial homeostasis during DTP generation. PINK1-mediated mitophagy supported DTP cell survival and contributed to poor prognosis. Mechanistically, MAPK pathway inhibition resulted in MYC-dependent transcriptional upregulation of PINK1, leading to mitophagy activation. Mitophagy inhibition using either clinically applicable chloroquine or depletion of PINK1 eradicated drug tolerance and allowed complete response to MAPK inhibitors. This study uncovers PINK1-mediated mitophagy as a novel tumor protective mechanism for DTP generation, providing a therapeutic opportunity to eradicate DTP and achieve complete responses. SIGNIFICANCE: DTP cancer cells that cause relapse after anticancer therapy critically depend on PINK1-mediated mitophagy and metabolic reprogramming, providing a therapeutic opportunity to eradicate persister cells to prolong treatment efficacy.


Assuntos
Mitofagia , Fosforilação Oxidativa , Humanos , Proteínas Quinases/metabolismo , Recidiva Local de Neoplasia , Homeostase , Oxirredução , Ubiquitina-Proteína Ligases/metabolismo
17.
Front Chem ; 10: 948714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118318

RESUMO

Twelve new guaianolide sesquiterpene lactones (1-12), along with ten known analogs (13-22) were isolated from an EtOH extract of the dried aerial parts of Artemisia vulgaris L. The new structures were elucidated via abundant spectroscopic data analyses (HRESIMS, IR, 1D, and 2D NMR), and the absolute configurations of these compounds were determined by X-ray crystallography and ECD calculations. The compounds (1-22) were identified as guaiane-type sesquiterpenes with characteristic α-methylene-γ-lactone and α,ß-unsaturated carbonyl moieties. All compounds were tested for their inhibitory activity against NO production in lipopolysaccharide-stimulated RAW264.7 macrophages. The isolated sesquiterpenoids dose-dependently exhibited an NO production inhibitory activity by inhibiting the expression of inducible NO oxidase (iNOS) and cyclooxygenase-2 (COX-2) with IC50 values ranging from 1.0 to 3.6 µM. The inhibitory effect on the NO production of the compounds (1-4 and 6-22) is better than that of the positive control (dexamethasone). The different substitutions of compounds on C-8 influence anti-inflammatory effects, as evidenced by the in silico analysis of related binding interactions of new compounds (1-12) with iNOS.

18.
Front Neurol ; 13: 938655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923828

RESUMO

Objective: Cerebral small vessel disease (CSVD) is a clinical syndrome caused by pathological changes in small vessels. Anxiety is a common symptom of CSVD. Previous studies have reported the association between inflammatory factors and anxiety in other diseases, but this association in patients with CSVD remains uncovered. Our study aimed to investigate whether serum inflammatory factors correlated with anxiety in patients with CSVD. Methods: A total of 245 CSVD patients confirmed using brain magnetic resonance imaging (MRI) were recruited from December 2019 to December 2021. Hamilton Anxiety Rating Scale (HAMA) was used to assess the anxiety symptoms of CSVD patients. Patients with HAMA scores ≥7 were considered to have anxiety symptoms. The serum levels of interleukin-1ß (IL-1ß), IL-2R, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), serum amyloid A (SAA), C-reactive protein (CRP), high-sensitivity C-reactive protein (hs-CRP) and erythrocyte sedimentation rate (ESR) were detected. We compared levels of inflammatory factors between the anxiety and non-anxiety groups. Logistic regression analyses examined the correlation between inflammatory factors and anxiety symptoms. We further performed a gender subgroup analysis to investigate whether this association differed by gender. Results: In the fully adjusted multivariate logistic regression analysis model, we found that lower levels of IL-8 were linked to a higher risk of anxiety symptoms. Moreover, higher levels of SAA were linked to a lower risk of anxiety symptoms. Our study identified sex-specific effects, and the correlation between IL-8 and anxiety symptoms remained significant among males, while the correlation between SAA and anxiety symptoms remained significant among females. Conclusions: In this study, we found a suggestive association between IL-8, SAA, and anxiety symptoms in CSVD participants. Furthermore, IL-8 and SAA may have a sex-specific relationship with anxiety symptoms.

19.
Nano Lett ; 22(16): 6753-6759, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939549

RESUMO

Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.

20.
Food Chem Toxicol ; 168: 113386, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007852

RESUMO

Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium fungi, widely contaminates feed, food and their raw materials. OTA has been proved to have hepatotoxicity and nephrotoxicity. Its reproductive toxicity needs to be further explored. We found that OTA inhibited the progression of meiosis, keeping more germ cells at leptotene and zygotene. Furthermore, OTA impaired primordial follicle formation, keeping more germ cells in cysts. Increased γH2AX suggested that DNA damage occurred both at the stages of meiosis and primordial follicle formation. The expression of RAD51 increased with the concentration of OTA at the stage of meiosis, while decreased later, suggesting the activated DNA repair induced by DNA damage then inhibited by persistent and excessive stress of DNA damage, which further induced apoptosis. DEGs caused by OTA were also mainly enriched in DNA damage and repair through RNA-seq analysis. Higher level of reactive oxygen species (ROS) and increased degree of oxidative damage marker 8-OHdG were both found in the ovaries exposed to OTA. We concluded that maternal OTA exposure affected meiosis progression and primordial follicle formation via oxidative damage and DNA repair. Clarification of the mechanism of OTA will contribute to the development of more effective detoxification strategies.


Assuntos
Micotoxinas , Ocratoxinas , Feminino , Humanos , Meiose , Ocratoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA