Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924456

RESUMO

BACKGROUND: Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature. PURPOSE: The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy. METHODS: The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting. RESULTS: CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine. CONCLUSION: CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.

2.
Cell Death Dis ; 14(4): 293, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185462

RESUMO

Expression of the long non-coding RNA (lncRNA) keratin-7 antisense (KRT7-AS) is downregulated in various types of cancer; however, the impact of KRT7-AS deficiency on tumorigenesis and apoptosis is enigmatic. We aim to explore the influence of KRT7-AS in carcinogenesis and apoptosis. We found that KRT7-AS was deficient in breast and lung cancers, and low levels of KRT7-AS were a poor prognostic factor in breast cancer. Cellular studies showed that silencing of KRT7-AS in lung cancer cells increased oncogenic Keratin-7 levels and enhanced tumorigenesis, but diminished cancer apoptosis of the cancer cells; by contrast, overexpression of KRT7-AS inhibited lung cancer cell tumorigenesis. Additionally, KRT7-AS sensitized cancer cells to the anti-cancer drug cisplatin, consequently enhancing cancer cell apoptosis. In vivo, KRT7-AS overexpression significantly suppressed tumor growth in xenograft mice, while silencing of KRT7-AS promoted tumor growth. Mechanistically, KRT7-AS reduced the levels of oncogenic Keratin-7 and significantly elevated amounts of the key tumor suppressor PTEN in cancer cells through directly binding to PTEN protein via its core nucleic acid motif GGCAAUGGCGG. This inhibited the ubiquitination-proteasomal degradation of PTEN protein, therefore elevating PTEN levels in cancer cells. We also found that KRT7-AS gene transcription was driven by the transcription factor RXRα; intriguingly, the small molecule berberine enhanced KRT7-AS expression, reduced tumorigenesis, and promoted apoptosis of cancer cells. Collectively, KRT7-AS functions as a new tumor suppressor and an apoptosis enhancer in lung and breast cancers, and we unraveled that the RXRα-KRT7-AS-PTEN signaling axis controls carcinogenesis and apoptosis. Our findings highlight a tumor suppressive role of endogenous KRT7-AS in cancers and an important effect the RXRα-KRT7-AS-PTEN axis on control of cancer cell tumorigenesis and apoptosis, and offer a new platform for developing novel therapeutics against cancers.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Queratina-7/genética , Queratina-7/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Apoptose/genética , Neoplasias Pulmonares/genética , Pulmão/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
3.
J Breast Cancer ; 26(2): 168-185, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095619

RESUMO

PURPOSE: Invasive breast carcinomas (BRCAs) are highly lethal. The molecular mechanisms underlying progression of invasive BRCAs are unclear, and effective therapies are highly desired. The cancer-testis antigen CT45A1 promotes overexpression of pro-metastatic sulfatase-2 (SULF2) and breast cancer metastasis to the lungs, but its mechanisms are largely unknown. In this study, we aimed to elucidate the mechanism of CT45A1-induced SULF2 overexpression and provide evidence for targeting CT45A1 and SULF2 for breast cancer therapy. METHODS: The effect of CT45A1 on SULF2 expression was assessed using reverse transcription polymerase chain reaction and western blot. The mechanism of CT45A1-induced SULF2 gene transcription was studied using protein-DNA binding assay and a luciferase activity reporter system. The interaction between CT45A1 and SP1 proteins was assessed using immunoprecipitation and western blot. Additionally, the suppression of breast cancer cell motility by SP1 and SULF2 inhibitors was measured using cell migration and invasion assays. RESULTS: CT45A1 and SULF2 are aberrantly overexpressed in patients with BRCA; importantly, overexpression of CT45A1 is closely associated with poor prognosis. Mechanistically, gene promoter demethylation results in overexpression of both CT45A1 and SULF2. CT45A1 binds directly to the core sequence GCCCCC in the promoter region of SULF2 gene and activates the promoter. Additionally, CT45A1 interacts with the oncogenic master transcription factor SP1 to drive SULF2 gene transcription. Interestingly, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenicity. CONCLUSION: Overexpression of CT45A1 is associated with poor prognosis in patients with BRCA. CT45A1 promotes SULF2 overexpression by activating the promoter and interacting with SP1. Additionally, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenesis. Our findings provide new insight into the mechanisms of breast cancer metastasis and highlight CT45A1 and SULF2 as sensible targets for developing novel therapeutics against metastatic breast cancer.

4.
Front Oncol ; 12: 864159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574342

RESUMO

Lung cancer is the leading type of malignant tumour among cancer-caused death worldwide, and the 5-year survival rate of lung cancer patients is only 18%. Various oncogenes are abnormally overexpressed in lung cancer, including cancer/testis antigens (CTAs), which are restrictively expressed in the male testis but are hardly expressed in other normal tissues, if at all. CTAs are aberrantly overexpressed in various types of cancer, with more than 60 CTAs abnormally overexpressed in lung cancer. Overexpression of oncogenic CTAs drives the initiation, metastasis and progression of lung cancer, and is closely associated with poor prognosis in cancer patients. Several CTAs, such as XAGE, SPAG9 and AKAP4, have been considered as biomarkers for the diagnosis and prognostic prediction of lung cancer. More interestingly, due to the high immunogenicity and specificity of CTAs in cancer, several CTAs, including CT45, BCAP31 and ACTL8, have been targeted for developing novel therapeutics against cancer. CTA-based vaccines, chimeric antigen receptor-modified T cells (CAR-T) and small molecules have been used in lung cancer treatment in pre-clinical and early clinical trials, with encouraging results being obtained. However, there are still many hurdles to be overcome before these therapeutics can be routinely used in clinical lung cancer therapy. This review summarises the recent rapid progress in oncogenic CTAs, focusing on CTAs as biomarkers for lung cancer diagnosis and prognostic prediction, and as targets for novel anti-cancer drug discovery and lung cancer therapy. We also identify challenges and opportunities in CTA-based cancer diagnosis and treatment. Finally, we provide perspectives on the mechanisms of oncogenic CTAs in lung cancer development, and we also suggest CTAs as a new platform for lung cancer diagnosis, prognostic prediction, and novel anti-cancer drug discovery.

5.
Breast Cancer Res ; 23(1): 116, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922602

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is highly metastatic and lethal. Due to a lack of druggable targets for this disease, there are no effective therapies in the clinic. METHODS: We used TNBC cells and xenografted mice as models to explore triptonide-mediated inhibition of TNBC metastasis and tumor growth. Colony formation assay was used to quantify the tumorigenesis of TNBC cells. Wound-healing and cell trans-well assays were utilized to measure cell migration and invasion. Tube formation assay was applied to access tumor cell-mediated vasculogenic mimicry. Western blot, quantitative-PCR, immunofluorescence imaging, and immunohistochemical staining were used to measure the expression levels of various tumorigenic genes in TNBC cells. RESULTS: Here, we showed that triptonide, a small molecule from the traditional Chinese medicinal herb Tripterygium wilfordii Hook F, potently inhibited TNBC cell migration, invasion, and vasculogenic mimicry, and effectively suppressed TNBC tumor growth and lung metastasis in xenografted mice with no observable toxicity. Molecular mechanistic studies revealed that triptonide strongly triggered the degradation of master epithelial-mesenchymal transition (EMT)-inducing protein Twist1 through the lysosomal system and reduced Notch1 expression and NF-κB phosphorylation, which consequently diminished the expression of pro-metastatic and angiogenic genes N-cadherin, VE-cadherin, and vascular endothelial cell growth factor receptor 2 (VEGFR2). CONCLUSIONS: Triptonide effectively suppressed TNBC cell tumorigenesis, vasculogenic mimicry, and strongly inhibited the metastasis of TNBC via degradation of Twist1 and Notch1 oncoproteins, downregulation of metastatic and angiogenic gene expression, and reduction of NF-κB signaling pathway. Our findings provide a new strategy for treating highly lethal TNBC and offer a potential new drug candidate for combatting this aggressive disease.


Assuntos
Neoplasias de Mama Triplo Negativas , Triterpenos , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Oncogênicas , Receptor Notch1/genética , Receptor Notch1/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Proteína 1 Relacionada a Twist/genética
6.
Biochem Pharmacol ; 185: 114423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476574

RESUMO

Metastatic melanoma has a very high mortality rate despite the availability of chemotherapy, radiotherapy, and immunotherapy; therefore, more effective therapeutics are needed. The Hippo pathway plays an inhibitory role in melanoma progression, but the tumor suppressors Salvador homolog-1 (SAV1) and large tumor suppressor 1 (LATS1) in this pathway are down-regulated in melanoma. As a result, the downstream oncogenic Yes-associated protein (YAP) is active, resulting in uncontrolled melanoma growth and metastasis. Therapeutics for remedying SAV1 and LATS1 deficiency in melanoma have not yet been reported in the literature. Here, we show that the small molecule triptonide (MW 358 Da) robustly suppressed melanoma cell tumorigenicity, migration, and invasion. Furthermore, triptonide markedly reduced tumor growth and melanoma lung metastasis in tumor-bearing mice with low toxicity. Molecular mechanistic studies revealed that triptonide promoted SAV1 and LATS1 expression, strongly activated the tumor-suppressive Hippo pathway, degraded oncogenic YAP via the lysosomal pathway, and reduced levels of tumorigenic microphthalmia-associated transcription factor (MITF) in melanoma cells. Triptonide also strongly inhibited activation of AKT, a SAV1-binding signaling protein. Collectively, our results conceptually demonstrate that induction of SAV1 and LATS1 expression and activation of the tumor-suppressive Hippo pathway by triptonide potently inhibits aggressive melanoma cell growth and metastasis. These findings suggest a new strategy for developing therapeutics to treat metastatic melanoma and highlight a novel drug candidate against aggressive melanoma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Melanoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Triterpenos/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Melanoma/prevenção & controle , Camundongos , Camundongos Nus , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA