Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(12): e202301217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870539

RESUMO

The binding of pseudallecin A (PA), a potential antibiotic with strong inhibitory activities against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus, to human serum albumin (HSA) was explored. The interaction between them was assessed by multi-spectroscopic analysis, binding site competitive analysis, molecular docking and molecular dynamic simulation, showing the results as follows: PA effectively quenched the innate fluorescence of HSA by a static quenching process, formed a complex at a molar ratio of approximately 1 : 1 and performed an effective non-radiative energy transfer; the binding of PA to HSA was a spontaneous exothermic reaction driven by enthalpy with strong affinity and had a slight effect on the conformation of HSA; PA bound at site III of HSA and hydrogen bonds were the major binding forces to maintain the stability of the PA-HSA complex. Molecular dynamic simulation was performed to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg) for this complex and effectively supported the spectroscopic outcome. These results meant that the delivery and distribution of PA as a water-insoluble molecule can be efficiently accomplished via HSA in human blood and, it has a good potential for future drug application and pharmacological development.


Assuntos
Simulação de Dinâmica Molecular , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação , Termodinâmica , Dicroísmo Circular , Espectrometria de Fluorescência
2.
Nat Prod Res ; 36(23): 5977-5983, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35285355

RESUMO

A novel tyroscherin derivative named pseudallecin A (1) with a natural unprecedented morpholine-2, 3-dione structural unit, and a new biogenic synthesis related organic acid named pseudallecin B (2) were purified from a symbiotic fungus Pseudallescheria boydii derived from Pomacea canaliculata. Their structures were elucidated via spectroscopic analyses and ECD calculation. Pseudallecin A exhibited strong inhibitory activities against both Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus.


Assuntos
Pseudallescheria , Pseudallescheria/química , Antibacterianos/farmacologia , Antibacterianos/química , Morfolinas
3.
Artigo em Inglês | MEDLINE | ID: mdl-34925525

RESUMO

Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA