Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brain Behav ; 14(7): e3600, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988142

RESUMO

OBJECTIVE: In this study, multimodal magnetic resonance imaging (MRI) imaging was used to deeply analyze the changes of hippocampal subfields perfusion and function in patients with type 2 diabetes mellitus (T2DM), aiming to provide image basis for the diagnosis of hippocampal-related nerve injury in patients with T2DM. METHODS: We recruited 35 patients with T2DM and 40 healthy control subjects (HCs). They underwent resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) scans, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, and regional homogeneity (ReHo) value of the bilateral hippocampus subfields. RESULTS: The CBF values of cornu ammonis area 1 (CA1), dentate gyrus (DG), and subiculum in the right hippocampus of T2DM group were significantly lower than those of HCs. The ALFF values of left hippocampal CA3, subiculum, and bilateral hippocampus amygdala transition area (HATA) were higher than those of HCs in T2DM group. The ReHo values of CA3, DG, subiculum, and HATA in the left hippocampus of T2DM group were higher than those of HCs. In the T2DM group, HbAc1 and FINS were negatively correlated with imaging characteristics in some hippocampal subregions. CONCLUSION: This study indicates that T2DM patients had decreased perfusion in the CA1, DG, and subiculum of the right hippocampus, and the right hippocampus subiculum was associated with chronic hyperglycemia. Additionally, we observed an increase in spontaneous neural activity within the left hippocampal CA3, subiculum, and bilateral HATA regions, as well as an enhanced local neural coordination in the left hippocampal CA3, DG, HATA, and subiculum among patients with type 2 diabetes, which may reflect an adaptive compensation for cognitive decline. However, this compensation may decline with the exacerbation of metabolic disorders.


Assuntos
Circulação Cerebrovascular , Diabetes Mellitus Tipo 2 , Hipocampo , Imageamento por Ressonância Magnética , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Masculino , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Circulação Cerebrovascular/fisiologia , Pessoa de Meia-Idade , Adulto , Descanso/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem
2.
Adv Sci (Weinh) ; 11(17): e2308924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425146

RESUMO

Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.


Assuntos
Aptâmeros de Nucleotídeos , Lisossomos , Proteólise , Lisossomos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Humanos
3.
J Gastrointest Surg ; 27(11): 2451-2463, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783911

RESUMO

BACKGROUND: In this study, we aimed to determine the impact of lymphadenectomy (LND) on clinical outcomes in ICC patients aged ≥ 70 years. METHODS: Four hundred and three eligible patients diagnosed with ICC who underwent hepatectomy between 2004 and 2019 were enrolled in the Surveillance, Epidemiology, and End Results database. The impact of LND on perioperative mortality and overall survival (OS) as well as the optimal total number of lymph nodes examined (TNLE) was estimated. RESULTS: One hundred thirty-nine pairs of patients were matched by propensity score matching. Perioperative mortality was comparable between the LND and non-LND (nLND) groups (0.7% vs. 2.9%, P = 0.367). The median OS in the LND group was significantly longer (44 vs. 32 months, P = 0.045) and LND was identified as an independent protective factor for OS by multivariate analysis (HR 0.65, 95% CI 0.46-0.92, P = 0.014). Patients with the following characteristics were potential beneficiaries of LND: white, female, no/moderate fibrosis, tumor size > 5 cm, solitary tumor, and localized invasion (all P < 0.05). TNLE ≥ 6 had the greatest discriminatory power for identifying lymph node metastasis (area under the curve, 0.704, Youden index, 0.365, P = 0.002). Patients with pathologically confirmed lymph node metastasis are likely to benefit from adjuvant therapy (40 months vs. 4 months, P = 0.052). CONCLUSIONS: Advanced age (≥ 70 years) was not a contraindication for LND, which facilitates accurate nodal staging and guides postoperative management. Appropriately selected elderly populations could benefit from LND.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Idoso , Humanos , Feminino , Metástase Linfática/patologia , Neoplasias dos Ductos Biliares/patologia , Excisão de Linfonodo/efeitos adversos , Linfonodos/cirurgia , Linfonodos/patologia , Ductos Biliares Intra-Hepáticos/patologia , Estadiamento de Neoplasias , Estudos Retrospectivos
4.
Endocrine ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340286

RESUMO

PURPOSE: Type 2 diabetes mellitus (T2DM) lead to impaired cerebral blood perfusion, which leads to changes in brain function and affects the cognitive function of patients. In this study, cerebral blood flow (CBF) was used to evaluate the effect of T2DM on cerebral perfusion, and functional connectivity (FC) analysis was further used to explore whether the FC between the abnormal CBF region and the whole brain was changed. In addition, amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC) were used to investigate the changes in spontaneous activity and connectivity strength of the brain network. METHODS: We recruited 40 T2DM patients and 55 healthy controls (HCs). They underwent 3D-T1WI, rs-fMRI, arterial spin labeling (ASL) sequence scans and a series of cognitive tests. Cognitive test scores and brain imaging indicators were compared between the two groups, and the relationships among laboratory indicators, cognitive test scores, and brain imaging indicators were explored in the T2DM group. RESULTS: Compared to HCs, The CBF values of Calcarine_L and Precuneus_R in the T2DM group were lower. The DC value of Paracentral_Lobule_L and Precuneus_L, and the ALFF value of Hippocampus_L in the T2DM group were higher. In addition, the CBF values of Calcarine_L was negatively correlated with fasting insulin and HOMA_IR. CONCLUSION: This study found that there were regions of cerebral hypoperfusion in T2DM patients, which are associated with insulin resistance. In addition, we found abnormally elevated brain activity and enhanced functional connectivity in T2DM patients, which we speculated was the compensatory mechanism of brain neural activity.

5.
Front Neurosci ; 16: 926486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928014

RESUMO

Purpose: Cognitive impairment is generally found in individuals with type 2 diabetes mellitus (T2DM). Although they may not have visible symptoms of cognitive impairment in the early stages of the disorder, they are considered to be at high risk. Therefore, the classification of these patients is important for preventing the progression of cognitive impairment. Methods: In this study, a convolutional neural network was used to construct a model for classifying 107 T2DM patients with and without cognitive impairment based on T1-weighted structural MRI. The Montreal cognitive assessment score served as an index of the cognitive status of the patients. Results: The classifier could identify T2DM-related cognitive decline with a classification accuracy of 84.85% and achieved an area under the curve of 92.65%. Conclusions: The model can help clinicians analyze and predict cognitive impairment in patients and enable early treatment.

6.
J Cancer ; 13(7): 2189-2199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517428

RESUMO

Head and neck cancers (HNC) include malignant tumors that grow in and around the mouth, larynx, throat, sinuses, nose, and salivary glands. Accumulating evidence in malignancies suggests the aberrant expressions of the estrogen receptor (ER) and the androgen receptor (AR) in HNC, such as in laryngeal cancer and cancer of the salivary gland. Moreover, the signaling pathways involving these receptors that mediate tumorigenesis, proliferation, apoptosis, migration, and invasion have been elucidated. This review summarizes the roles of ER and AR with the putative signaling pathways involved in HNC. We also discuss the potential application of ER- and AR-related therapies in HNC. However, most of the mechanisms underlying AR and ER involvement in the development of HNC remain elusive and warrant further studies. A comprehensive understanding of the functional roles and mechanisms of action of AR and ER in HNC will facilitate the development of better therapeutic strategies for this disease. Overall, studies on AR and ER provide a promising potential for the diagnosis and treatment of HNC in the future.

7.
Front Radiol ; 2: 858963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37492679

RESUMO

A high proportion of massive patients with hepatocellular carcinoma (HCC) are not amenable for surgical resection at initial diagnosis, owing to insufficient future liver remnant (FLR) or an inadequate surgical margin. For such patients, portal vein embolization (PVE) is an essential approach to allow liver hypertrophy and prepare for subsequent surgery. However, the conversion resection rate of PVE only is unsatisfactory because of tumor progression while awaiting liver hypertrophy. We report here a successfully treated case of primary massive HCC, where surgical resection was completed after PVE and multimodality therapy, comprising hepatic artery infusion chemotherapy (HAIC), Lenvatinib plus Sintilimab. A pathologic complete response was achieved. This case demonstrates for the first time that combined PVE with multimodality therapy appears to be safe and effective for massive, potentially resectable HCC and can produce deep pathological remission in a primary tumor.

8.
Front Neurosci ; 16: 1070911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699515

RESUMO

Objective: This study aims to explore the changes in the structure, perfusion, and function of the bilateral hippocampus in type 2 diabetes mellitus (T2DM) applying multimodal MRI methods, hoping to provide reliable neuroimaging evidence for the diagnosis of hippocampus-related brain injury in T2DM. Methods: We recruited 30 T2DM patients and 45 healthy controls (HCs), on which we performed 3D T1-weighted images, resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL) sequences, and a series of cognitive tests. Then, we compared the differences of two groups in the cerebral blood flow (CBF) value, amplitude of low-frequency fluctuation (ALFF) value, fractional ALFF (fALFF) value, coherence-based regional homogeneity (Cohe-ReHo) value, and degree centrality (DC) values of the bilateral hippocampus. Results: In the T2DM group, the bilateral hippocampal volumes and the CBF value of the right hippocampus were lower than those in the HCs, while the ALFF value, fALFF value, and Cohe-ReHo value of the bilateral hippocampus were higher than those in the HCs. Correlation analysis showed that fasting blood glucose (FBG) was negatively correlated with the residuals of left hippocampal volume (r = -0.407, P = 0.025) and right hippocampal volume (r = -0.420, P = 0.021). The residual of the auditory-verbal learning test (AVLT) (immediate) score was positively correlated with the residual of right hippocampal volume (r = 0.369, P = 0.045). Conclusion: This study indicated that the volume and perfusion of the hippocampus are decreased in T2DM patients that related to chronic hyperglycemia. Local spontaneous neural activity and coordination are increased in the hippocampus of T2DM patients, possibly as an adaptive compensation for cognitive decline.

9.
Front Endocrinol (Lausanne) ; 13: 1117735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760808

RESUMO

Introduction: Type 2 diabetes mellitus (T2DM) can accelerate cognitive decline and even dementia so that the underlying mechanism deserves further exploration. In the resting state, brain function is still changing dynamically. At present, it is still unknown whether the dynamic functional connectivity (dFC) between various brain regions is in a stable state. It is necessary to interpret brain changes from a new perspective, that is, the stability of brain architecture. Methods: In this study, we used a fixed dynamic time scale to explore the stability of dynamic functional architecture in T2DM, then the dynamic effective connectivity (dEC) was used to further explain how information flows through dynamically fluctuating brain architecture in T2DM. Result: Two brain regions with decreased stability were found including the right supra-marginal gyrus (SMG) and the right median cingulate gyrus (MCG) in T2DM subjects. The dEC variation has increased between the left inferior frontal gyrus (IFG) and the right MCG. The direction of causal flow is from the right MCG to the left IFG. Conclusion: The combination of stability and dEC can not only show the stability of dynamic functional architecture in brain but also reflect the fluidity of brain information, which is an innovative and interesting attempt in the field of neuroimaging. The changes of dynamic architecture in T2DM patients may present an innovative perspective and explanation for their cognitive decline.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Neuroimagem
10.
Front Neurosci ; 15: 728874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764850

RESUMO

Diabetes with high blood glucose levels may damage the brain nerves and thus increase the risk of dementia. Previous studies have shown that dementia can be reflected in altered brain structure, facilitating computer-aided diagnosis of brain diseases based on structural magnetic resonance imaging (MRI). However, type 2 diabetes mellitus (T2DM)-mediated changes in the brain structures have not yet been studied, and only a few studies have focused on the use of brain MRI for automated diagnosis of T2DM. Hence, identifying MRI biomarkers is essential to evaluate the association between changes in brain structure and T2DM as well as cognitive impairment (CI). The present study aims to investigate four methods to extract features from MRI, characterize imaging biomarkers, as well as identify subjects with T2DM and CI.

11.
Mol Cancer ; 20(1): 126, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598686

RESUMO

The 2020 Nobel Prize in Chemistry was awarded to Emmanuelle Charpentier and Jennifer Doudna for the development of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology that provided new tools for precise gene editing. It is possible to target any genomic locus virtually using only a complex nuclease protein with short RNA as a site-specific endonuclease. Since cancer is caused by genomic changes in tumor cells, CRISPR/Cas9 can be used in the field of cancer research to edit genomes for exploration of the mechanisms of tumorigenesis and development. In recent years, the CRISPR/Cas9 system has been increasingly used in cancer research and treatment and remarkable results have been achieved. In this review, we introduced the mechanism and development of the CRISPR/Cas9-based gene editing system. Furthermore, we summarized current applications of this technique for basic research, diagnosis and therapy of cancer. Moreover, the potential applications of CRISPR/Cas9 in new emerging hotspots of oncology research were discussed, and the challenges and future directions were highlighted.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/diagnóstico , Neoplasias/etiologia , Neoplasias/terapia , Animais , Biomarcadores Tumorais , Carcinogênese/genética , Carcinogênese/metabolismo , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Edição de Genes/métodos , Humanos , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Medicina de Precisão/métodos , Pesquisa
12.
Front Neurosci ; 15: 690743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335167

RESUMO

OBJECTIVES: The purpose of this study was to (1) explore the changes in topological properties of static and dynamic brain functional networks after nasopharyngeal carcinoma (NPC) radiotherapy (RT) using rs-fMRI and graph theoretical analysis, (2) explore the correlation between cognitive function and changes in brain function, and (3) add to the understanding of the pathogenesis of radiation brain injury (RBI). METHODS: Fifty-four patients were divided into 3 groups according to time after RT: PT1 (0-6 months); PT2 (>6 to ≤12 months); and PT3 (>12 months). 29 normal controls (NCs) were included. The subjects' topological properties were evaluated by graph-theoretic network analysis, the functional connectivity of static functional networks was calculated using network-based statistics, and the dynamic functional network matrix was subjected to cluster analysis. Finally, correlation analyses were conducted to explore the relationship between the altered network parameters and cognitive function. RESULTS: Assortativity, hierarchy, and network efficiency were significantly abnormal in the PT1 group compared with the NC or PT3 group. The small-world variance in the PT3 group was smaller than that in NCs. The Nodal ClustCoeff of Postcentral_R in the PT2 group was significantly smaller than that in PT3 and NC groups. Functional connectivities were significantly reduced in the patient groups. Most of the functional connectivities of the middle temporal gyrus (MTG) were shown to be significantly reduced in all three patient groups. Most of the functional connectivities of the insula showed significantly reduced in the PT1 and PT3 groups, and most of the functional connectivities in brain regions such as frontal and parietal lobes showed significantly reduced in the PT2 and PT3 groups. These abnormal functional connectivities were correlated with scores on multiple scales that primarily assessed memory, executive ability, and overall cognitive function. The frequency F of occurrence of various states in each subject differed significantly, and the interaction effect of group and state was significant. CONCLUSION: The disruption of static and dynamic functional network stability, reduced network efficiency and reduced functional connectivity may be potential biomarkers of RBI. Our findings may provide new insights into the pathogenesis of RBI from the perspective of functional networks.

13.
Hum Brain Mapp ; 42(14): 4671-4684, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34213081

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment and may progress to dementia. However, the brain functional mechanism of T2DM-related dementia is still less understood. Recent resting-state functional magnetic resonance imaging functional connectivity (FC) studies have proved its potential value in the study of T2DM with cognitive impairment (T2DM-CI). However, they mainly used a mass-univariate statistical analysis that was not suitable to reveal the altered FC "pattern" in T2DM-CI, due to lower sensitivity. In this study, we proposed to use high-order FC to reveal the abnormal connectomics pattern in T2DM-CI with a multivariate, machine learning-based strategy. We also investigated whether such patterns were different between T2DM-CI and T2DM without cognitive impairment (T2DM-noCI) to better understand T2DM-induced cognitive impairment, on 23 T2DM-CI and 27 T2DM-noCI patients, as well as 50 healthy controls (HCs). We first built the large-scale high-order brain networks based on temporal synchronization of the dynamic FC time series among multiple brain region pairs and then used this information to classify the T2DM-CI (as well as T2DM-noCI) from the matched HC based on support vector machine. Our model achieved an accuracy of 79.17% in T2DM-CI versus HC differentiation, but only 59.62% in T2DM-noCI versus HC classification. We found abnormal high-order FC patterns in T2DM-CI compared to HC, which was different from that in T2DM-noCI. Our study indicates that there could be widespread connectivity alterations underlying the T2DM-induced cognitive impairment. The results help to better understand the changes in the central neural system due to T2DM.


Assuntos
Cerebelo , Córtex Cerebral , Disfunção Cognitiva , Conectoma/métodos , Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Rede Nervosa , Adulto , Idoso , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Complicações do Diabetes/classificação , Complicações do Diabetes/diagnóstico por imagem , Complicações do Diabetes/etiologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
14.
Front Neurosci ; 15: 749730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975372

RESUMO

Objective: We aimed to explore whether the percent amplitude of fluctuation (PerAF) measurement could provide supplementary information for amplitude of low-frequency fluctuation (ALFF) about spontaneous activity alteration in type 2 diabetes mellitus (T2DM) subjects without mild cognitive impairment (MCI). Then we further evaluated the synchronization through the method of functional connectivity (FC) to better demonstrate brain changes in a more comprehensive manner in T2DM. Methods: Thirty T2DM subjects without MCI and thirty well-matched healthy subjects were recruited in this study. Subjects' clinical data, neuropsychological test results, and resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired. Voxel-based group difference comparisons between PerAF and ALFF were conducted. Then, seed-based FC between the recognized brain regions based on PerAF and ALFF and the rest of the whole brain was performed. Results: Compared with healthy group, T2DM group had significantly decreased PerAF in the bilateral middle occipital gyrus and the right calcarine, increased ALFF in the right orbital inferior frontal gyrus and decreased ALFF in the right calcarine. Seed-based FC analysis showed that the right middle occipital gyrus of T2DM subjects exhibited significantly decreased FC with the right caudate nucleus and right putamen. According to the partial correlation analyses, hemoglobin A1c (HbA1c) and immediate memory scores on the auditory verbal learning test (AVLT) were negatively correlated in the T2DM group. However, we found that total cholesterol was positively correlated with symbol digit test (SDT) scores. Conclusion: PerAF and ALFF may have different sensitivities in detecting the abnormal spontaneous brain activity in T2DM subjects. We suggest PerAF values may add supplementary information and indicate additional potential neuronal spontaneous activity in T2DM subjects without MCI, which may provide new insights into the neuroimaging mechanisms underlying early diabetes-associated cognitive decline.

15.
Front Neurol ; 11: 1016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071928

RESUMO

Background: Type 2 diabetes mellitus (T2DM)-related cognitive decline is associated with neuroimaging changes. However, only a few studies have focused on early functional alteration in T2DM prior to mild cognitive impairment (MCI). This study aimed to investigate the early changes of global connectivity patterns in T2DM by using a resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods: Thirty-four T2DM subjects and 38 age-, sex-, and education-matched healthy controls (HCs) underwent rs-fMRI in a 3T MRI scanner. Degree centrality (DC) was used to identify the functional hubs of the whole brain in T2DM without MCI. Then the functional connectivity (FC) between hubs and the rest of the brain was assessed by using the hub-based approach. Results: Compared with HCs, T2DM subjects showed increased DC in the right cerebellum lobules III-V. Hub-based FC analysis found that the right cerebellum lobules III-V of T2DM subjects had increased FC with the right cerebellum crus II and lobule VI, the right temporal inferior/middle gyrus, and the right hippocampus. Conclusions: Increased DC in the right cerebellum regions III-V, as well as increased FC within cerebellar regions and ipsilateral cerebrocerebellar regions, may indicate an important pathophysiological mechanism for compensation in T2DM without MCI.

16.
Front Neurol ; 11: 561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625164

RESUMO

Temporal lobe epilepsy (TLE) and frontal lobe epilepsy (FLE) are the largest subgroup of partial epilepsy, and focal cortical dysplasias (FCDs) are highly epileptogenic brain lesions and are a frequent cause for antiepileptic drug (AED)-resistant focal epilepsies that mostly occur in the temporal and frontal lobes. We performed a graph-theoretical study based on the diffusion tensor imaging (DTI) data of patients with FLE or TLE caused by FCDs or lesions with high suspicion of FCDs and evaluated their cognitive function by the Chinese version of the Montreal Cognitive Assessment-Basic (MoCA-BC). The construction of the white matter structural network and graph-theoretical analysis was performed by Pipeline for Analysing Brain Diffusion Images (PANDA) and Graph-theoretical Network Analysis (GRETNA). We used the nonparametric analysis of covariance to compare the differences in diffusion metrics, network attributes and nodal attributes among FLE, TLE, and healthy control (HC) groups and then performed post hoc pairwise comparisons. Nonparametric Spearman partial correlation analysis was performed to analyse the correlation of network attributes with the age of onset, duration of disease, and MoCA-BC scores in patients with FLE and TLE. The results showed that the white matter structural network in patients with FLE and TLE was impaired in a more extensive set of regions than the FCD location. The similarities in white matter alterations between FLE and TLE suggested that their epileptogenic network might affect the fronto-temporal white matter tracts and thalamo-occipital connections, which might be responsible for the overlapping cognitive deficits in FLE and TLE. The white matter impairments in patients with FLE were more severe than those in patients with TLE, which might be explained by more affected nodes in the areas of DMN in patients with FLE.

17.
Cancer Manag Res ; 12: 2789-2802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425596

RESUMO

BACKGROUND: Hypoxia-induced chemoresistance is recognized as a major obstacle to the successful treatment of gastric cancer (GC). Circular RNAs (circRNAs) have been proposed to implicate in resistance to chemotherapeutic drugs. However, whether circNRIP1 is involved in the development of hypoxia-induced 5-fluorouracil (5-FU) resistance remains largely unknown. METHODS: Gene expression was evaluated using quantitative real-time polymerase chain reaction and Western blot. The impact of circNRIP1 on hypoxia-induced resistance to 5-FU was investigated by determining glucose consumption, lactate production and glucose-6-phosphate (G6P) levels. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide assay was performed to assess cell survival. RESULTS: circNRIP1 was upregulated in GC cells. Hypoxia induced the upregulation of circNRIP1 and reduced the sensitivity of GC cells to 5-FU, as evidenced by the increase in multidrug resistance 1 gene, P-glycoprotein, hypoxia-inducible factor-1α (HIF-1α) and G6P levels, glucose consumption, lactate production, as well as cell survival. Silencing of circNRIP1 enhanced the sensitivity of GC cells to 5-FU under a hypoxic condition. microRNA (miR)-138-5p was confirmed as a downstream target gene of circNRIP1, and upregulation of miR-138-5p could reverse the effect of circNRIP1 on hypoxia-induced 5-FU resistance. Additionally, HIF-1α was a target gene of miR-138-5p. More significantly, the effect of circNRIP1 on hypoxia-induced 5-FU resistance was markedly blocked by 2-DG treatment. CONCLUSION: circNRIP1 functioned as a miR-138-5p sponge to enhance hypoxia-induced resistance to 5-FU through modulation of HIF-1α-dependent glycolysis, which provides a novel potential approach to overcome hypoxia-induced 5-FU resistance in GC.

18.
Front Neurol ; 10: 599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275222

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and may even progress to dementia. However, the underlying mechanism of altered functional topological organization and cognitive impairments remains unclear. This study explored the topological properties of functional whole brain networks in T2DM patients with graph theoretical analysis using a resting-state functional magnetic resonance imaging (rs-fMRI) technique. Thirty T2DM patients (aged 51.77 ± 1.42 years) and 30 sex-, age-, and education-matched healthy controls (HCs) (aged 48.87 ± 0.98 years) underwent resting-state functional imaging in a 3.0 T MR scanner in addition to detailed neuropsychological and laboratory tests. Then, graph theoretical network analysis was performed to explore the global and nodal topological alterations in the functional whole brain networks of the T2DM patients. Finally, correlation analyses were performed to investigate the relationship between the altered topological parameters, cognitive performances and clinical variables. Compared to HCs, we found that T2DM patients displayed worse performances in general cognitive function and several cognitive domains, including episodic memory, attention and executive function. In addition, T2DM patients showed a higher small-worldness (σ), a higher normalized clustering coefficient (γ) and a higher local efficiency (Eloc). Moreover, decreased nodal topological properties were mainly distributed in the occipital lobes, frontal lobes, left median cingulate and paracingulate gyri, and left amygdala, while increased nodal topological properties were mainly distributed in the right gyrus rectus, right anterior cingulate and paracingulate gyri, right posterior cingulate gyrus, bilateral caudate nucleus, bilateral cerebellum 3, bilateral cerebellum crus 1, vermis (1, 2) and vermis 3. Some disrupted nodal topological properties were correlated with cognitive performance and HbA1c levels in T2DM patients. This study shows altered functional topological organization in T2DM patients, mainly suggesting a compensation mechanism of the functional whole brain network in the relatively early stage to counteract cognitive impairments.

19.
Cancer Imaging ; 19(1): 17, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894223

RESUMO

BACKGROUND: The therapeutic planning varies for different grades of choroid plexus tumours (CPTs). The aim of this study was to define the similarities and distinctions among MRIs for different grades of CPTs, providing more guidance for clinical decisions. METHODS: We reviewed the MRI findings in 35 patients with CPT verified by surgical pathology, including 18 choroid plexus papillomas (CPPs, grade I), 11 atypical choroid plexus papillomas (aCPPs, grade II), and 6 choroid plexus carcinomas (CPCs, grade III). Nonparametric testing based on ranks was performed to evaluate the association of pathological grade with MRI findings. RESULTS: Among the 35 CPTs, 29 were located in the ventricular system. The tumours were generally slightly hypo- or isointense on T1WI, slightly hyper- or isointense on T2WI, and moderately or strongly enhanced in post-contrast imaging. Twenty cases were accompanied by hydrocephalus. The median tumour longest diameters of CPPs, aCPPs, and CPCs were 28.6, 44.6, and 60.6 mm, respectively. Four cases were purely cystic, 6 were papillary, 10 were lobulated, and 2 were irregular. Three cases had necrosis. The median oedema diameters of CPPs, aCPPs, and CPCs were 0, 0, and 24.1 mm, respectively. The grades of CPTs were statistically associated with tumour longest diameter (rs = 0.68, P < 0.001), internal morphology (χ2 = 10.32, P = 0.016), necrosis (Z = 2.27, P = 0.023), and oedema diameter (rs = 0.72, P < 0.001). CONCLUSION: CPTs typically appeared as intraventricular papillary or lobulated lesions, often accompanied by hydrocephalus. Larger tumour, irregular or fuzzy internal morphology, presentation of necrosis and wide-ranging peritumoural oedema might increase the likelihood of malignancy.


Assuntos
Neoplasias do Plexo Corióideo/diagnóstico por imagem , Neoplasias do Plexo Corióideo/patologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
20.
Cancer Imaging ; 19(1): 19, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909974

RESUMO

BACKGROUND: The purpose/aim of this study was to 1) use magnetic resonance diffusion tensor imaging (DTI), fibre bundle/tract-based spatial statistics (TBSS) and machine learning methods to study changes in the white matter (WM) structure and whole brain WM network in different periods of the nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT), 2) identify the most discriminating WM regions and WM connections as biomarkers of radiation brain injury (RBI), and 3) supplement the understanding of the pathogenesis of RBI, which is useful for early diagnosis in the clinic. METHODS: A DTI scan was performed in 77 patients and 67 normal controls. A fractional anisotropy map was generated by DTIFit. TBSS was used to find the region where the FA differed between the case and control groups. Each resulting FA value image is registered with each other to create an average FA value skeleton. Each resultant FA skeleton image was connected to feature vectors, and features with significant differences were extracted and classified using a support vector machine (SVM). Next, brain segmentation was performed on each subject's DTI image using automated anatomical labeling (AAL), and deterministic white matter fiber bundle tracking was performed to generate symmetrical brain matrix, select the upper triangular component as a classification feature. Two-sample t-test was used to extract the features with significant differences, then classified by SVM. Finally, we adopted a permutation test and ROC curves to evaluate the reliability of the classifier. RESULTS: For FA, the accuracy of classification between the 0-6, 6-12 and > 12 months post-RT groups and the control group was 84.5, 83.9 and 74.5%, respectively. In the case groups, the FA with discriminative ability was reduced, mainly in the bilateral cerebellum and bilateral temporal lobe, with prolonged time, the damage was aggravated. For WM connections, the SVM classifier classification recognition rates of the 0-6, 6-12 and > 12 months post-RT groups reached 82.5, 78.4 and 76.3%, respectively. The WM connections with discriminative ability were reduced. CONCLUSIONS: RBI is a disease involving whole brain WM network anomalies. These brain discriminating WM regions and WM connection modes can supplement the understanding of RBI and be used as biomarkers for the early clinical diagnosis of RBI.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Aprendizado de Máquina , Carcinoma Nasofaríngeo/radioterapia , Lesões por Radiação/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Lesões Encefálicas/etiologia , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Radioterapia Conformacional/efeitos adversos , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes , Substância Branca/lesões , Substância Branca/fisiopatologia , Substância Branca/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA