Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612057

RESUMO

High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the kinetic slow diffusion effect, and the electrochemical "cocktail effect"), leading to excellent cycling stability. Although the number of articles on the study of HEO materials has increased significantly, the latest research progress in porous HEO materials in the lithium-ion battery field has not been systematically summarized. This review outlines the progress made in recent years in the design, synthesis, and characterization of porous HEOs and focuses on phase transitions during the cycling process, the role of individual elements, and the lithium storage mechanisms disclosed through some advanced characterization techniques. Finally, the future outlook of HEOs in the energy storage field is presented, providing some guidance for researchers to further improve the design of porous HEOs.

2.
J Colloid Interface Sci ; 645: 287-296, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150002

RESUMO

The biomedical field has the potential to significantly benefit from the use of flexible free-standing Ag nanostructures due to their outstanding mechanical and antibacterial properties. However, the intricate process of synthesizing these nanostructures, as well as the potential toxicity of nanostructured Ag, pose significant challenges. This study used a facile etching method to synthesize the free-standing nanoporous Ag (NP-Ag) ribbons with a homogeneous and bicontinuous three-dimensional ligament structure. The free-standing NP-Ag ribbons demonstrated stable mechanical performance and excellent flexibility when subjected to various deformation states on artificial fingers. Additionally, the NP-Ag ribbons exhibited remarkable antibacterial capacity with rates of 99.81 ± 0.14% against Escherichia coli, 96.11 ± 1.49% against Staphylococcus aureus, and 95.37 ± 1.24% against methicillin-resistant Staphylococcus aureus. The antibacterial mechanism of NP-Ag is attributed to the rapid release of Ag ions (Ag+) in 24 h, causing damage to the bacterial membrane. Moreover, the in vivo results demonstrate that the NP-Ag ribbons provide rapid antibacterial efficacy and are biosafe due to the long-term stable Ag+ release of NP-Ag. The development of these free-standing flexible NP-Ag ribbons offers a new avenue for wearable antibacterial applications.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanoporos , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Nanopartículas Metálicas/química
3.
Antib Ther ; 6(2): 97-107, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077474

RESUMO

BACKGROUND: Ending the global COVID-19 pandemic requires efficacious therapies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nevertheless, the emerging Omicron sublineages largely escaped the neutralization of current authorized monoclonal antibody therapies. Here we report a tetravalent bispecific antibody ISH0339, as a potential candidate for long-term and broad protection against COVID-19. METHODS: We report here the making of ISH0339, a novel tetravalent bispecific antibody composed of a pair of non-competing neutralizing antibodies that binds specifically to two different neutralizing epitopes of SARS-CoV-2 receptor-binding domain (RBD) and contains an engineered Fc region for prolonged antibody half-life. We describe the preclinical characterization of ISH0339 and discuss its potential as a novel agent for both prophylactic and therapeutic purposes against SARS-CoV-2 infection. RESULTS: ISH0339 bound to SARS-CoV-2 RBD specifically with high affinity and potently blocked the binding of RBD to the host receptor hACE2. ISH0339 demonstrated greater binding, blocking and neutralizing efficiency than its parental monoclonal antibodies, and retained neutralizing ability to all tested SARS-CoV-2 variants of concern. Single dosing of ISH0339 showed potent neutralizing activity for treatment via intravenous injection and for prophylaxis via nasal spray. Preclinical studies following single dosing of ISH0339 showed favorable pharmacokinetics and well-tolerated toxicology profile. CONCLUSION: ISH0339 has demonstrated a favorable safety profile and potent anti-SARS-CoV-2 activities against all current variants of concern. Furthermore, prophylactic and therapeutic application of ISH0339 significantly reduced the viral titer in lungs. Investigational New Drug studies to evaluate the safety, tolerability and preliminary efficacy of ISH0339 for both prophylactic and therapeutic purposes against SARS-CoV-2 infection have been filed.

4.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835563

RESUMO

As high-capacity anode materials, spinel NiFe2O4 aroused extensive attention due to its natural abundance and safe working voltage. For widespread commercialization, some drawbacks, such as rapid capacity fading and poor reversibility due to large volume variation and inferior conductivity, urgently require amelioration. In this work, NiFe2O4/NiO composites with a dual-network structure were fabricated by a simple dealloying method. Benefiting from the dual-network structure and composed of nanosheet networks and ligament-pore networks, this material provides sufficient space for volume expansion and is able to boost the rapid transfer of electrons and Li ions. As a result, the material exhibits excellent electrochemical performance, retaining 756.9 mAh g-1 at 200 mA g-1 after cycling for 100 cycles and retaining 641.1 mAh g-1 after 1000 cycles at 500 mA g-1. This work provides a facile way to prepare a novel dual-network structured spinel oxide material, which can promote the development of oxide anodes and also dealloying techniques in broad fields.


Assuntos
Lítio , Óxidos , Porosidade , Eletrodos , Íons
5.
Nanoscale ; 14(39): 14322-14340, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36106572

RESUMO

The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.

6.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014718

RESUMO

Designing a novel photocatalytic composite for the efficient degradation of organic dyes remains a serious challenge. Herein, the multi-layered Co3O4@NP-CuO photocatalyst with unique features, i.e., the self-supporting, hierarchical porous network as well as the construction of heterojunction between Co3O4 and CuO, are synthesized by dealloying-electrodeposition and subsequent thermal treatment techniques. It is found that the interwoven ultrathin Co3O4 nanopetals evenly grow on the nanoporous CuO network (Co3O4@NP-CuO). The three-dimensional (3D) hierarchical porous structure for the catalyst provides more surface area to act as active sites and facilitates the absorption of visible light in the photodegradation reaction. Compared with the commercial CuO and Co3O4 powders, the newly designed Co3O4@NP-CuO composite exhibits superior photodegradation performance for RhB. The enhanced performance is mainly due to the construction of heterojunction of Co3O4/CuO, greatly promoting the efficient carrier separation for photocatalysis. Furthermore, the possible photocatalytic mechanism is analyzed in detail. This work provides a promising strategy for the fabrication of a new controllable heterojunction to improve photocatalytic activity.

7.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889703

RESUMO

With the deterioration of the ecological environment and the depletion of fossil energy, fuel cells, representing a new generation of clean energy, have received widespread attention. This review summarized recent progress in noble metal-based core-shell catalysts for oxygen reduction reactions (ORRs) in proton exchange membrane fuel cells (PEMFCs). The novel testing methods, performance evaluation parameters and research methods of ORR were briefly introduced. The effects of the preparation method, temperature, kinds of doping elements and the number of shell layers on the ORR performances of noble metal-based core-shell catalysts were highlighted. The difficulties of mass production and the high cost of noble metal-based core-shell nanostructured ORR catalysts were also summarized. Thus, in order to promote the commercialization of noble metal-based core-shell catalysts, research directions and prospects on the further development of high performance ORR catalysts with simple synthesis and low cost are presented.

8.
Materials (Basel) ; 15(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329624

RESUMO

Biodegradable Mg-Zn-Ca-based metallic glasses (MGs) present improved strength and superior corrosion resistance, compared to crystalline Mg. In particular, in vivo and in vitro attempts reveal that biodegradable Mg-Zn-Ca-based MGs possess excellent biocompatibility, suggesting that they are ideal candidates for temporary implant materials. However, the limited size and severe brittleness prevent their widespread commercialization. In this review, we firstly summarize the microstructure characteristic and mechanical properties of Mg-Zn-Ca-based MGs. Then, we provide a comprehensive and systematic understanding of the recent progress of the biocorrosion and biocompatibility of Mg-Zn-Ca-based MGs. Last, but not least, the outlook towards the fabrication routes, composition design, structure design, and reinforcement approaches of Mg-Zn-Ca-based MGs are briefly proposed.

9.
Materials (Basel) ; 15(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161149

RESUMO

The paper presents the microstructure and mechanical property of pure aluminum (Al) fabricated by multi-pass caliber rolling at room temperature. The finite element modeling (FEM) simulation was performed to explore the changes in rolling force, effective stress and strain, and temperature under various rolling passes. As the number of rolling passes increased, the overall temperature, effective stress, and strain gradually increased, while the maximum rolling force decreased. In addition, due to the dynamic recrystallization (DRX), the average grain size reduced from 1 mm to 14 µm with the increase in rolling passes. The dislocation density increased and it gradually evolved into the high-angle grain boundaries (HAGBs). Moreover, the initial cubic texture rotated to the brass component and finally changed to a mixture of Cube and Brass types. The highest tensile yield strength (TYS), ultimate tensile strength (UTS) and elongation (El.) of caliber rolled pure Al (116 MPa, 135 MPa, and 17%, respectively) can be achieved after 13 rolling passes, which mainly attributed to grain refinement.

10.
J Colloid Interface Sci ; 602: 563-572, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147749

RESUMO

Although high-capacity germanium (Ge) has been regarded as the promising anode material for lithium ion batteries (LIBs), its actual performance is far from expectation because of low electrical conductivity and rapid capacity decay during cycling. In this work, Sn modified nanoporous Ge materials with different Ge/Sn atomic ratios in precursors were synthesized by a simple melt-spinning and dealloying strategy. As the anodes of LIBs, Sn modified nanoporous Ge materials display improved cycling stability compared with Sn-free nanoporous Ge, revealing a potential role of Sn in improving electrochemical properties of Ge-based anodes. In particular, Sn modified nanoporous Ge with Ge/Sn atomic ratio of 3:1 presents the best Li storage performance among measured electrodes, delivering a reversible capacity of 974 mA h g-1 after 500 cycles at 200 mA g-1. It is found that the introduction of appropriate amount of Sn can not only regulate the nanoporous structure of Ge to better alleviate volume expansion, but also improves the conductivity and activity of the electrode material. This improvement is demonstrated by density functional theory calculations. The study uncovers a route to improve Li storage properties by rationally modify Ge-based anodes with Sn, which may facilitate the development of high-performance LIBs.

11.
J Colloid Interface Sci ; 592: 103-115, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647559

RESUMO

Due to huge volume expansion and poor electrical conductivity, the commercial application of the promising Germanium (Ge) anode is restrained in lithium ion battery (LIB) field. Generally, conductive metals can improve the electron mobility in Ge. In that way, whether active materials or conductive metals account for a higher proportion in the anode is controversial in this field and needs to be clarified urgently. Herein, three Ge-based anodes with different ratios in conductive Ag are fabricated by a facile melt spinning and one-step dealloying method. It is found that Ag nanoparticles embedded three-dimensional nanoporous Ge (Ag/np-Ge) electrode with high active material ratio exhibits the best cycling stability among tested samples, delivering a high capacity of 953 mAh g-1 after 100 cycles at a current density of 100 mA g-1 and an excellent reversible capacity of 522 mAh g-1 after 200 cycles even at the high current density of 1000 mA g-1. The enhanced cycling stability can be attributed to the synergistic effect of nanoporous network-like structure and embedded Ag nanoparticles. A dramatical increase in electrical conductivity and activity of Ge by doping of Ag is confirmed by density functional theory (DFT) calculations. The work provides us an idea to rationally design the three-dimensional structure of active materials assisting with a proper ratio of conductive metals, which may promote the development of promising Ge anodes for LIBs with excellent cycling stability.

12.
Nanomaterials (Basel) ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967244

RESUMO

The development of facile preparation methods and novel three-dimensional structured anodes to improve cycling stability of lithium ion batteries (LIBs) is urgently needed. Herein, a dual-network ferroferric oxide/nickel oxide (Fe3O4/NiO) anode was synthesized through a facile dealloying technology, which is suitable for commercial mass manufacturing. The dual-network with high specific surface area contains a nanoplate array network and a bimodal nanoporous urchin network. It exhibits excellent electrochemical performance as an anode material for LIB, delivering a reversible capacity of 721 mAh g-1 at 100 mA g-1 after 100 cycles. The good lithium storage performance is related to the ample porous structure, which can relieve stress and mitigate the volume change in the charge/discharge process, the interconnected porous network that enhances ionic mobility and permeability, and synergistic effects of two kinds of active materials. The paper provides a new idea for the design and preparation of anode materials with a novel porous structure by a dealloying method and may promote the development of the dealloying field.

13.
Nanomaterials (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429290

RESUMO

Mg-based metallic glasses (MGs) are widely studied due to their high elasticity and high strength originating from their amorphous nature. However, their further application in many potential fields is limited by poor corrosion resistance. In order to improve this property, an MgO nanoplate array layer is first constructed on the surface of Mg-based MGs by cyclic voltammetry (CV) treatments. In this situation, the corrosion resistance and hydrophilicity of the material are enhanced. Then, stearic acid (SA) can effectively adhere onto the surface of the MgO layer to form a superficial hydrophobic film with a water contact angle (WCA) of 131°. As a result, the SA coated MgO hydrophobic film improves the corrosion resistance of Mg-based MGs in 3.5 wt.% NaCl solution obviously. In addition, the effects of four technological parameters (solution concentration, sweep rate, cycle number, and reaction temperature) in the CV process on the morphology and size of nano-products are investigated in detail. The work proposes a new method for the creation of nanostructures on the surface of materials and provides a new idea to increase the corrosion resistance of MGs. The related method is expected to be applied in wider fields in future.

14.
J Colloid Interface Sci ; 569: 22-33, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32097799

RESUMO

With the advantages of excellent theoretical specific capacity and specific energy, lithium-sulfur (Li-S) battery is regarded as one of promising energy storage systems. However, poor conductivity and shuttle effect of intermediate electrochemical reaction products limit its application. As good sulfur carriers, porous carbon materials can effectively remit these shortcomings. In this paper, a combination of a hydrothermal KOH activation and successive pyrolysis of biomass reed flowers is proposed to prepare a bimodal porous carbon (BPC) material with high specific surface area (1712.6 m2 g-1). The as-obtained low-cost BPC/S cathodes exhibit excellent cycling performance (908 mAh g-1 at 0.1 C after 100 cycles), good rate capability and cyclability (663 mAh g-1 at 1 C after 1000 cycles), as well as a high areal capacity (6.6 mAh cm-2 at 0.1 C after 50 cycles with a sulfur loading of 8.3 mg cm-2). Such excellent electrochemical performance was mainly ascribed to a specific bimodal porous structure with high specific surface area and plenty spaces for sulfur impregnating, which significantly reduces the escape of polysulfides during cycling and guarantees a good cycling stability. Moreover, the secondary class pores (mesopores and micropores) of the material offer plenty of small channels to improve the electronic and ionic transfer rate and, consequently, to enhance the rate capability. The as-synthesized BPC material presents a great potential as a sulfur carrier material for Li-S battery applications. In this work, we also demonstrate a simple route to develop low-cost carbon materials derived from renewable biomass which may expand and promote their use in energy storage applications.

15.
Nanomaterials (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092848

RESUMO

To improve glucose electrocatalytic performance, one efficient manner is to develop a novel Cu-Ag bimetallic composite with fertile porosity and unique architecture. Herein, the self-supported electrode with CuxO/Ag2O (x = 1, 2) nanowires grown in-situ on a nanoporous Cu-Ag network (CuxO/Ag2O@NP-CuAg) has been successfully designed by a facile two-step approach. The integrated hierarchical porous structure, the tip-converged CuxO/Ag2O nanowires combined with the interconnected porous conductive substrate, are favorable to provide more reactive sites and improve ions or electrons transportation. Compared with monometallic Cu2O nanowires integrated with nanoporous Cu matrix (Cu2O@NP-Cu), the bimetallic CuxO/Ag2O@NP-CuAg composites exhibit the enhanced electrocatalytic performance for glucose. Moreover, the higher sensitivity of ~1.49 mA mM-1 cm-2 in conjunction with a wider linear range of 17 mM for the CuxO/Ag2O@NP-CuAg electrode anodized for 10 min are attributed to the synergistic effect of porous structure and bimetallic CuxO/Ag2O nanowires. Particularly, the integrated CuxO/Ag2O@NP-CuAg composites possess good flexibility, which has been reported for the first time. Accordingly, the CuxO/Ag2O@NP-CuAg with excellent glucose electrocatalytic performance and good flexibility is promising to further develop as a candidate electrode material of glucose sensors.

16.
Beilstein J Nanotechnol ; 10: 281-293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30746322

RESUMO

Developing a facile and environmentally friendly approach to the synthesis of nanostructured Ni(OH)2 electrodes for high-performance supercapacitor applications is a great challenge. In this work, we report an extremely simple route to prepare a Ni(OH)2 nanopetals network by immersing Ni nanofoam in water. A binder-free composite electrode, consisting of Ni(OH)2 nanopetals network, Ni nanofoam interlayer and Ni-based metallic glass matrix (Ni(OH)2/Ni-NF/MG) with sandwich structure and good flexibility, was designed and finally achieved. Microstructure and morphology of the Ni(OH)2 nanopetals were characterized. It is found that the Ni(OH)2 nanopetals interweave with each other and grow vertically on the surface of Ni nanofoam to form an "ion reservoir", which facilitates the ion diffusion in the electrode reaction. Electrochemical measurements show that the Ni(OH)2/Ni-NF/MG electrode, after immersion in water for seven days, reveals a high volumetric capacitance of 966.4 F/cm3 at a current density of 0.5 A/cm3. The electrode immersed for five days exhibits an excellent cycling stability (83.7% of the initial capacity after 3000 cycles at a current density of 1 A/cm3). Furthermore, symmetric supercapacitor (SC) devices were assembled using ribbons immersed for seven days and showed a maximum volumetric energy density of ca. 32.7 mWh/cm3 at a power density of 0.8 W/cm3, and of 13.7 mWh/cm3 when the power density was increased to 2 W/cm3. The fully charged SC devices could light up a red LED. The work provides a new idea for the synthesis of nanostructured Ni(OH)2 by a simple approach and ultra-low cost, which largely extends the prospect of commercial application in flexible or wearable devices.

17.
Nanoscale Res Lett ; 13(1): 344, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377858

RESUMO

Due to the severe volume expansion and poor cycle stability, transition metal oxide anode is still not meeting the commercial utilization. We herein demonstrate the synthetic method of core-shell pomegranate-shaped Fe2O3/C nano-composite via one-step hydrothermal process for the first time. The electrochemical performances were measured as anode material for Li-ion batteries. It exhibits excellent cycling performance, which sustains 705 mAh g-1 reversible capacities after 100 cycles at 100 mA g-1. The anodes also showed good rate stability with discharge capacities of 480 mAh g-1 when cycling at a rate of 2000 mA g-1. The excellent Li storage properties can be attributed to the unique core-shell pomegranate structure, which can not only ensure good electrical conductivity for active Fe2O3, but also accommodate huge volume change during cycles as well as facilitate the fast diffusion of Li ion.

18.
Sci Rep ; 8(1): 6530, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695815

RESUMO

To remit capacity fading of lithium ion battery (LIB) anodes, freestanding yucca fern shaped CuO nanowires (NWs) on Cu foams are fabricated as anodes by combining facile and scalable anodization of copper foams followed by calcination. The porous and radial configuration of the hierarchical CuO NWs on the Cu foam substrate guarantees the remarkably improved electrochemical performance with durable cycle stability and excellent rate capability compared with CuO NWs on Cu foils. The reversible capacity remains 461.5 mAh/g after 100 repeated cycles at a current density of 100 mA/g, and a capacity of 150.6 mAh/g even at a high rate of 1000 mA/g. By examining the surface morphology of the cycled samples, possible performance fading route is proposed. The 3D CuO NWs network with a porous architecture simutaneously reduces the ion diffusion distances, promotes the electrolyte permeation and electronic conductivity. This novel strategy might open a new window to develop durable CuO based composite anodes for LIBs.

19.
Nanoscale ; 10(16): 7605-7611, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29644362

RESUMO

The major obstacles which prohibit the practical applications of alloy-type anodes include insufficient ionic/electronic transportations and structural failures. Herein, we report the fabrication of a carbon-coated nanoporous SnSb alloy (NP-SnOxSb@C) and its application as an anode in Li-ion batteries (LIBs). The as-fabricated NP-SnOxSb@C is characterized by SEM and TEM and demonstrates a bi-continuous nanoporous structure. Amorphous carbon is found to be uniformly coated on the alloy surface. When used as an anode for LIB, NP-SnOxSb@C displays a high capacity (850 mA h g-1 after the 50th cycle) and good rate performance of 664 mA h g-1 at 2000 mA g-1. The improved electrochemical performance is mainly due to a high Li+ diffusion coefficient and low charge transfer resistance between the nanoporous structure and conductive carbon layer. The facile material fabrication process and good electrochemical performance enable the practical utilization of this anode for high-performance LIBs.

20.
Nanomaterials (Basel) ; 7(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29077072

RESUMO

Cu50Zr45Al5 bulk metallic glass (BMG) presents high fracture strength. For improving its plasticity and controlling its mechanical properties, superficial dealloying of the BMG was performed. A composite structure containing an inner rod-shaped Cu-Zr-Al amorphous core with high strength and an outer dealloyed nanoporous layer with high energy absorption capacity was obtained. The microstructures and mechanical properties of the composites were studied in detail. It was found, for the first time, that the mechanical properties of Cu50Zr45Al5 BMG can be controlled by adjusting the width of the buffer deformation zone in the dealloyed layer, which can be easily manipulated with different dealloying times. As a result, the compressive strength, compressive strain, and energy absorption capacity of the BMGs can be effectively modulated from 0.9 to 1.5 GPa, from 2.9% to 4.7%, and from 29.1 to 40.2 MJ/m³, respectively. The paper may open a door for developing important engineering materials with regulable and comprehensive performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA