Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(11): 7868-7876, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38440979

RESUMO

Diodes based on p-n junctions are fundamental building blocks for numerous circuits, including rectifiers, photovoltaic cells, light-emitting diodes (LEDs), and photodetectors. However, conventional doping techniques to form p- or n-type semiconductors introduce impurities that lead to Coulomb scattering. When it comes to low-dimensional materials, controllable and stable doping is challenging due to the feature of atomic thickness. Here, by selectively depositing dielectric layers of Y2O3 and AlN, direct formation of wafer-scale carbon-nanotube (CNT) diodes are demonstrated with high yield and spatial controllability. It is found that the oxygen interstitials in Y2O3, and the oxygen vacancy together with Al-Al bond in AlN/Y2O3 electrostatically modulate the intrinsic CNTs channel, which leads to p- and n-type conductance, respectively. These CNTs diodes exhibit a high rectification ratio (>104) and gate-tunable rectification behavior. Based on these results, we demonstrate the applicability of the diodes in electrostatic discharge (ESD) protection and photodetection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA