Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37763525

RESUMO

In this paper, we systematically investigate the synergistic regulation of ultraviolet and mechanical loading on the electromechanical behavior of a GaN nanowire. The distributions of polarization charge, potential, carriers, and electric field in the GaN nanowire are analytically represented by using a one-dimensional model that combines pyro-phototronic and piezo-phototronic properties, and then, the electrical transmission characteristics are analyzed. The results suggest that, due to the pyro-phototronic effect and ultraviolet photoexcited non-equilibrium carriers, the electrical behavior of a nano-Schottky junction can be modulate by ultraviolet light. This provides a new method for the function improvement and performance regulation of intelligent optoelectronic nano-Schottky devices.

2.
Materials (Basel) ; 16(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770087

RESUMO

In this paper, we propose a one-dimensional model that combines photoelectricity, piezoelectricity, and photothermal effects. The influence of ultraviolet light on the electromechanical coupling properties of GaN nanowires is investigated. It is shown that, since the ultraviolet photon energy is larger than the forbidden gap of GaN, the physical fields in a GaN nanowire are sensitive to ultraviolet. The light-induced polarization can change the magnitude and direction of a piezoelectric polarization field caused by a mechanical load. Moreover, a large number of photogenerated carriers under photoexcitation enhance the current density, whilst they shield the Schottky barrier and reduce rectifying characteristics. This provides a new theoretical nanoarchitectonics approach for the contactless performance regulation of nano-GaN devices such as photoelectric sensors and ultraviolet detectors, which can further release their great application potential.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33671903

RESUMO

Reservoirs play an important role in the urban water supply, yet reservoirs receive an influx of large amounts of pollutants from the upper watershed during flood seasons, causing a decline in water quality and threatening the water supply. Identifying major pollution sources and assessing water quality risks are important for the environmental protection of reservoirs. In this paper, the principal component/factor analysis-multiple linear regression (PCA/FA-MLR) model and Bayesian networks (BNs) are integrated to identify water pollution sources and assess the water quality risk in different precipitation conditions, which provides an effective framework for water quality management during flood seasons. The deterioration of the water quality of rivers in the flood season is found to be the main reason for the deterioration in the reservoir water quality. The nonpoint source pollution is the major pollution source of the reservoir, which contributes 53.20%, 48.41%, 72.69%, and 68.06% of the total nitrogen (TN), phosphorus (TP), fecal coliforms (F.coli), and turbidity (TUB), respectively. The risk of the water quality parameters exceeding the surface water standard under different hydrological conditions is assessed. The results show that the probability of the exceedance rate of TN, TP, and F.coli increases from 91.13%, 3.40%, and 3.34%, to 95.75%, 25.77%, and 12.76% as the monthly rainfall increases from ≤68.25 mm to >190.18 mm. The risk to the water quality of the Biliuhe River reservoir is found to increase with the rising rainfall intensity, the water quality risk at the inlet during the flood season is found to be much greater than that at the dam site, and the increasing trend of TP and turbidity is greater than that of TN and F.coli. The risk of five-day biochemical oxygen demand (BOD5) does not increase with increasing precipitation, indicating that it is less affected by nonpoint source pollution. The results of this study can provide a research basis for water environment management during flood seasons.


Assuntos
Água Potável , Poluentes Químicos da Água , Teorema de Bayes , China , Monitoramento Ambiental , Inundações , Nitrogênio/análise , Fósforo/análise , Rios , Estações do Ano , Poluentes Químicos da Água/análise , Qualidade da Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-32708499

RESUMO

With a shifting climate pattern and enhancement of human activities, coastal areas are exposed to threats of groundwater environmental issues. This work takes the eastern coast of Laizhou Bay as a research area to study the response of a coastal groundwater system to natural and human impacts with a combination of statistical, hydrogeochemical, and fuzzy classification methods. First, the groundwater level dynamics from 1980 to 2017 were analyzed. The average annual groundwater level dropped 13.16 m with a descent rate of 0.379 m/a. The main external environmental factors that affected the groundwater level were extracted, including natural factors (rainfall and temperature), as well as human activities (irrigated area, water-saving irrigated area, sown area of high-water-consumption crops, etc.). Back-propagation artificial neural network was used to model the response of groundwater level to the above driving factors, and sensitivity analysis was conducted to measure the extent of impact of these factors on groundwater level. The results verified that human factors including irrigated area and water-saving irrigated area were the most important influencing factors on groundwater level dynamics, followed by annual precipitation. Further, groundwater samples were collected over the study area to analyze the groundwater hydrogeochemical signatures. With the hydrochemical diagrams and ion ratios, the formation of groundwater, the sources of groundwater components, and the main hydrogeochemical processes controlling the groundwater evolution were discussed to understand the natural background of groundwater environment. The fuzzy C-means clustering method was adopted to classify the groundwater samples into four clusters based on their hydrochemical characteristics to reveal the spatial variation of groundwater quality in the research area. Each cluster was spatially continuous, and there were great differences in groundwater hydrochemical and pollution characteristics between different clusters. The natural and human factors resulted in this difference were discussed based on the natural background of the groundwater environment, and the types and intensity of human activity.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , China , Humanos , Poluentes Químicos da Água/análise
5.
Environ Monit Assess ; 192(7): 446, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32564150

RESUMO

Dams and sluices break down the river continuum, alter the river hydrological regime, and intercept the migration processes of nutrients and pollutants. The regulation of dams and sluices will have great impacts on water quality characteristics in the river basin. In this study, variable fuzzy pattern recognition model (VFPR), principal component analysis/factor analysis (PCA/FA), and the absolute principal component score-multiple linear regression (APCS-MLR) were used to assess the water quality and identify the potential pollution sources in a highly regulated river of Northeast China. A set of water quality variables at three stations were measured from January 2015 to August 2017. The water quality assessment results showed that there were spatial and temporal variations of water quality and the total nitrogen (TN) and fecal coliforms (F. coli) were the major pollution factors of the study river section. Four pollution sources, including industrial effluent source, domestic sewage source, meteorological factor and atmospheric deposition source, and agricultural non-point source, were identified in dry and wet seasons using the PCA/FA method. The APCS-MLR results showed that the industrial effluent source was the main pollution source in dry seasons and had a decrease in wet seasons. While the mean contribution of the domestic sewage source had an increase in wet seasons, influenced by the sewage overflow and the flushing of pollutants during the extreme precipitation, the construction of dams decreased the flow obviously in wet seasons and increased in dry seasons. The increase in pollutants caused by storm runoff and the reduction of dilution water in the river channel could be the main reason for the water quality degradation in wet seasons.


Assuntos
Rios , Poluentes Químicos da Água , Qualidade da Água , China , Monitoramento Ambiental , Estações do Ano , Poluição da Água
6.
Materials (Basel) ; 11(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332845

RESUMO

In this paper, the fracture behavior of GaN piezoelectric semiconductor ceramics was investigated under combined mechanical and electric loading by using three-point bending tests and numerical analysis. The experimental results demonstrate that, in contrast to traditional insulating piezoelectric ceramics, electric current is a key factor in affecting the fracture characteristics of GaN ceramics. The stress, electric displacement, and electric current intensity factors were numerically calculated and then a set of empirical formulae was obtained. By fitting the experimental data, a fracture criterion under combined mechanical and electrical loading was obtained in the form of an ellipsoid function of intensity factors. Such a fracture criterion can be extended to predict the failure behavior of other piezoelectric semiconductors or devices with a crack, which are useful in their reliability design and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA