Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Chem Soc ; 146(10): 6697-6705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419157

RESUMO

Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.

2.
ACS Cent Sci ; 9(9): 1827-1834, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780354

RESUMO

Storage phosphors displaying defect emissions are indispensable in technologically advanced radiation dosimeters. The current dosimeter is limited to the passive detection mode, where ionizing radiation-induced deep-trap defects must be activated by external stimulation such as light or heat. Herein, we designed a new type of shallow-trap storage phosphor by controlling the dopant amounts of Ag+ and Bi3+ in the host lattice of Cs2NaInCl6. A distinct phenomenon of X-ray-induced emission (XIE) is observed for the first time in an intrinsically nonemissive perovskite. The intensity of XIE exhibits a quantitative relationship with the accumulated dose, enabling a real-time radiation dosimeter. Thermoluminescence and in situ X-ray photoelectron spectroscopy verify that the emission originates from the radiative recombination of electrons and holes associated with X-ray-induced traps. Theoretical calculations reveal the evolution process of Cl-Cl dimers serving as hole trap states. Analysis of temperature-dependent radioluminescence spectra provides evidence that the intrinsic electron-phonon interaction in 0.005 Ag+@ Cs2NaInCl6 is significantly reduced under X-ray irradiation. Moreover, 0.025 Bi3+@ Cs2NaInCl6 shows an elevated sensitivity to the accumulated dose with a broad response range from 0.08 to 45.05 Gy. This work discloses defect manipulation in halide double perovskites, giving rise to distinct shallow-trap storage phosphors that bridge traditional deep-trap storage phosphors and scintillators and enabling a brand-new type of material for real-time radiation dosimetry.

3.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850614

RESUMO

Perovskite CsPbBr3 semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties, demonstrating strong potential for γ-radiation and X-ray detection at room temperature. However, the total dose effects of the perovskite CsPbBr3 must be considered when working in a long-term radiation environment. In this work, the Schottky type of perovskite CsPbBr3 detector was fabricated. Their electrical characteristics and γ-ray response were investigated before and after 60Co γ ray irradiation with 100 and 200 krad (Si) doses. The γ-ray response of the Schottky-type planar CsPbBr3 detector degrades significantly with the increase in total dose. At the total dose of 200 krad(Si), the spectral resolving ability to γ-ray response of the CsPbBr3 detector has disappeared. However, with annealing at room temperature for one week, the device's performance was partially recovered. Therefore, these results indicate that the total dose effects strongly influence the detector performance of the perovskite CsPbBr3 semiconductor. Notably, it is concluded that the radiation-induced defects are not permanent, which could be mitigated even at room temperature. We believe this work could guide the development of perovskite detectors, especially under harsh radiation conditions.

4.
Angew Chem Int Ed Engl ; 59(35): 15209-15214, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32432349

RESUMO

Radio-photoluminescence (RPL) materials display a distinct radiation-induced permanent luminescence center, and therefore find application in the detection of ionizing radiation. The current inventory of RPL materials, which were discovered by serendipity, has been limited to a small number of metal-ion-doped inorganic materials. Here we document the RPL of a metal-organic framework (MOF) for the first time: X-ray induced free radicals are accumulated on the organic linker and are subsequently stabilized in the conjugated fragment in the structure, while the metal center acts as the X-ray attenuator. These radicals afford new emission features in both UV-excited and X-ray excited luminescence spectra, making it possible to establish linear relationships between the radiation dose and the normalized intensity of the new emission feature. The MOF-based RPL materials exhibit advantages in terms of the dose detection range, reusability, emission stability, and energy threshold. Based on a comprehensive electronic structure and energy diagram study, the rational design and a substantial expansion of candidate RPL materials can be anticipated.

5.
BMC Med Inform Decis Mak ; 20(Suppl 1): 72, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32349764

RESUMO

BACKGROUND: Semantic textual similarity (STS) is a fundamental natural language processing (NLP) task which can be widely used in many NLP applications such as Question Answer (QA), Information Retrieval (IR), etc. It is a typical regression problem, and almost all STS systems either use distributed representation or one-hot representation to model sentence pairs. METHODS: In this paper, we proposed a novel framework based on a gated network to fuse distributed representation and one-hot representation of sentence pairs. Some current state-of-the-art distributed representation methods, including Convolutional Neural Network (CNN), Bi-directional Long Short Term Memory networks (Bi-LSTM) and Bidirectional Encoder Representations from Transformers (BERT), were used in our framework, and a system based on this framework was developed for a shared task regarding clinical STS organized by BioCreative/OHNLP in 2018. RESULTS: Compared with the systems only using distributed representation or one-hot representation, our method achieved much higher Pearson correlation. Among all distributed representations, BERT performed best. The highest Person correlation of our system was 0.8541, higher than the best official one of the BioCreative/OHNLP clinical STS shared task in 2018 (0.8328) by 0.0213. CONCLUSIONS: Distributed representation and one-hot representation are complementary to each other and can be fused by gated network.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Processamento de Linguagem Natural , Redes Neurais de Computação , Semântica , Humanos , Idioma
6.
Environ Pollut ; 251: 945-951, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31234261

RESUMO

The removals of arsenic and selenium pollutants are always urgent desires for the water security. In this study, both sorption and catalysis strategies were combined for the effective removals of As(V) and Se(VI) over magnetic graphene oxide sheets (GOs)-oxidized carbon nanotubes (OCNTs) hydrogels. The sorption behavior facilitated the operation of catalysis reactions, meanwhile, the catalytic reduction promoted the release of occupied sorption sites and then restarted a new sorption-catalysis cycle. The synergic effect of sorption and catalysis realized 258.2 mg g-1 for As(V) enrichment capacity on MPG2T1, and ultra-fast sorption and catalysis equilibriums were identified within 9 min. In the case of Se(VI), a moderate enrichment performance was observed to be 46.2 mg g-1. Similarly, the ultra-fast sorption and reduction of Se(VI) were realized within 2 min. In the competition experiments, only SO42-, SO32-, and HPO42- showed interference for As(V) and Se(VI) removals. These results testified the superiority of the synergy effect of sorption and catalysis, and the feasibility of 3D magnetic GOs-OCNTs hydrogel in practical implementations.


Assuntos
Arsênio/química , Grafite/química , Nanotubos de Carbono/química , Selênio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Catálise , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA