Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730815

RESUMO

The synergistic effects of boron (B) and rare earth (RE) elements on the microstructure and stress rupture properties were investigated in a Ni-based superalloy. The stress rupture lifetime at 650 °C/873 MPa significantly increased with the addition of B as a single element. Furthermore, the stress rupture lifetime reached its peak (303 h), with a certain amount of B and RE added together in test alloys. Although the grain size and morphology of the γ' phase varied a little with the change in B and RE addition, they were not considered to be the main reasons for stress rupture performance. The enhancement in stress rupture lifetime was mostly attributed to the segregation of the B and RE elements, which increased the binding force of the grain boundary and improved its strength and plasticity. In addition, the enrichment of B and RE inhabited the precipitation of carbides along grain boundaries. Furthermore, nano-scale RE precipitates containing sulfur (S) and phosphorus (P) were observed to be distributed along the grain boundaries. The purification of grain boundaries by B and RE elements was favorable to further improve the stress rupture properties.

2.
Materials (Basel) ; 16(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959435

RESUMO

With the development of product miniaturization in aerospace, the nuclear industry, and other fields, Ni-Co-based superalloys with excellent overall properties have become key materials for micro components in these fields. In the microforming field, size effects significantly impact the mechanical properties and plastic deformation behavior of materials. In this paper, micro-tensile experiments at room temperature and an ultra-low temperature were carried out to study the effects of initial microstructure and deformation temperature on the deformation behavior of Ni-Co-based superalloy thin sheets. The results show that as the ratio of specimen thickness to grain size (t/d) decreased from 8.6 to 2.4, the tensile strength σb decreased from 1221 MPa to 1090 MPa, the yield strength σs decreased from 793 MPa to 622 MPa, and the elongation decreased from 0.26 to 0.21 at room temperature. When t/d decreased from 8.6 to 2.4, σb decreased from 1458 MPa to 1132 MPa, σs decreased from 917 MPa to 730 MPa, and the elongation decreased from 0.31 to 0.28 at ultra-low temperatures. When t/d decreased from 8.6 to 2.4, the surface roughness of the specimen increased from 0.769 to 0.890 at room temperature and increased from 0.648 to 0.809 at ultra-low temperatures. During the microplastic deformation process of Ni-Co-based superalloy thin sheets, the coupled effects of surface roughening caused by free surface grains and hindered dislocation movement induced by grain boundary resulted in strain localization, which caused fracture failure of Ni-Co-based superalloy thin sheets.

3.
Materials (Basel) ; 15(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057334

RESUMO

As the key materials of aircraft engines, nickel-based superalloys have excellent comprehensive properties. Mircotensile experiments were carried out based on in situ digital image correlation (DIC) and in situ synchrotron radiation (SR) technique. The effects of the δ phase on the grain orientation, surface roughening, and strain localization were investigated. The results showed that the average kernel average misorientation (KAM) value of the fractured specimens increased significantly compared with that of the heat-treated specimens. The surface roughness decreased with an increasing volume fraction of the δ phase. The strain localization of specimens increased with the increasing ageing time. The size and volume fraction of voids gradually increased with the increase in plastic strain. Some small voids expanded into large voids with a complex morphology during micro-tensile deformation. The needle-like δ phase near the fracture broke into short rods, while the minor spherical δ phase did not break. The rod-like and needle-like δ phases provided channels for the propagation of the microcrack, and the accumulation of the microcrack eventually led to the fracture of specimens.

4.
Scanning ; 2020: 1087024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373250

RESUMO

Microstructural evolutions of EK61 superalloy during long-term aging until 1000 h at 700°C and 750°C, respectively, are studied by combination of Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Impact fracture morphologies after aging for different time are observed by the SEM. The microstructure is found to be relatively stable during aging at 700°C, and the fracture morphologies are characterized by transgranular fracture. At 750°C, the coarsening of γ' phase leads the reduction of the quantity of dimples, the chainization of carbides on grain boundaries leads to intergranular fracture, and the netting of η phases within grains leads to the formation of lamellar cleavage steps. It is obvious that the destabilization of precipitated phases affects fracture morphology significantly. The relationship between fracture morphology and the microstructure promotes the evaluation of service reliability of EK61 superalloy.

5.
Materials (Basel) ; 12(15)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382406

RESUMO

Nickel-based superalloys have become key materials for turbine disks and other aerospace components due to their excellent mechanical properties at high temperatures. Mechanical properties of nickel-based superalloys are closely related to their microstructures. Various heat treatment processes were conducted to obtain the desired microstructures of a nickel-based superalloy in this study. The effect of the initial microstructures on the tensile deformation and fracture behaviors was investigated via in situ digital image correlation (DIC) and synchrotron radiation X-ray tomography (SRXT). The results showed that the size and volume fraction of γ″ and γ' phases increased with the aging time. The yield strength and the ultimate tensile strength increased due to the precipitation strengthening at the expense of ductility. The surface strain analysis showed severely inhomogeneous deformation. The local strains at the edge of specimens were corresponded to higher void densities. The fracture of carbides occurred owing to the stress concentration, which was caused by the dislocation accumulation. The fracture mode was dimple coalescence ductile fracture.

6.
Materials (Basel) ; 8(9): 6179-6194, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28793559

RESUMO

The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ' precipitates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA